You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
==STABILIZED SOLUTION  OF  THE MULTIDIMENSIONAL ADVECTION-DIFFUSION-ABSORPTION EQUATION USING  LINEAR FINITE ELEMENTS==
2
3
'''Eugenio Oñate, Juan Miquel  and Francisco Zárate'''
4
5
{|
6
|-
7
International Center for Numerical Methods in Engineering (CIMNE)
8
|-
9
| Universidad Politécnica de Cataluña
10
|-
11
| Edificio C1, Gran Capitán s/n, 08034, Barcelona, Spain
12
|-
13
| e-mail: [mailto:onate@cimne.upc.edu onate@cimne.upc.edu]
14
|}
15
16
==Abstract==
17
18
'''Abstract.'''
19
20
<br/><br/>
21
22
==1 INTRODUCTION==
23
24
Considerable effort has been spent in recent years to derive finite element methods (FEM) <span id='citeF-1'></span>[[#cite-1|1]] for the solution of the advection-diffusion-reaction equation. In this work we will focus on the so called ''exponential regime'' originated by large absorptive (dissipative) reaction terms. Here the solutions are of the form of real exponential functions.  Numerical schemes  find difficulties to approximating the sharp gradients appearing in the neighborhood of boundary and internal layers due to high Peclet and/or Damköhler numbers. Non physical oscilaltory solution are found with the standard Galerkin FEM unless some stabilization procedure is used.
25
26
Stabilized methods to tackle this problem have been based on  streamline-upwind/Petrov-Galerkin (SUPG)  <span id='citeF-2'></span>[[#cite-2|2]], Galerkin/least-squares <span id='citeF-5'></span>[[#cite-5|5]], Subgrid Scale (SGS) <span id='citeF-5'></span>[[#cite-5|5]] and Residual Free Bubbles <span id='citeF-14'></span>[[#cite-14|14]] finite element methods. While a single stabilization parameter suffices to yield stabilized (and even nodally exact results) for the one-dimensional (1D) advection-diffusion and the diffusion-reaction equations (Vol. 3 in <span id='citeF-1'></span>[[#cite-1|1]] and <span id='citeF-8'></span>[[#cite-8|8]]), this is not the case for the diffusion-advection-reaction equation. Here, in general,  ''two stabilization parameters'' are needed in order to ensure a stabilized solution for all range of physical parameters and boundary conditions <span id='citeF-4'></span>[[#cite-4|4]]. As reported in <span id='citeF-12'></span>[[#cite-12|12]] the SUPG, GLS and SGS methods with a single stabilization parameter fail to obtain a stabilized solution for some specific boundary conditions in the exponential regime with negative (absorption) terms when there is a negative streamwise gradient of the solution.
27
28
Oñate ''et al.'' [18] have recently presented a stabilized FEM for the advection-diffusion absorption equation based on the use of a single stabilization parameter which has the form of a diffusion term. In [18] the formulation is detailed for 1D problems and only a brief introduction to the multidimensional case is given. This paper extends the ideas presented in [18] and provides evidence of the effectiveness and accuracy of the new formulation to deal with multidimensional advection-diffusion-absorption  problems  with sharp gradients.
29
30
The stabilized formulation is based on the standard Galerkin FEM solution of the modified governing differential equations derived via the ''Finite Calculus'' (FIC) method [19&#8211;20]. The FIC equations are obtained by expressing the balance of fluxes in a domain of finite size. This introduces additional stabilizing terms in the differential equations of the infinitessimal theory which are a function of the balance domain dimensions. Although the FIC&#8211;FEM formulation here presented is general, we will restrict its application in this work to linear finite element approximations only.
31
32
The Galerkin FIC-FEM formulation  described here introduces naturally an additional nonlinear dissipation term into the discretized equations which is governed by a ''single stabilization parameter''. In the absence of the absorption term the formulation simplifies to the standard Petrov-Galerkin approach for the advection-diffusion problem For the diffusion-absorption case the diffusion-type stabilization term is identical to that recently obtained by Felippa and Oñate using a variational FIC approach  <span id='citeF-15'></span>[[#cite-15|15]]. The general nonlinear form of the stabilization parameter  is a function of the signs of the solution and   its first and second derivatives. This introduces a non-linearity in the solution scheme and a simple iterative algorithm  is described. A simpler constant expression of the stabilization parameter is also presented.
33
34
Details of the 1D formulation and its extension to deal with multidimensional problems are given. For the multidimensional case Oñate ''et al.'' <span id='citeF-27'></span>[[#cite-27|27]] have recently shown that a general form of the stabilization parameters can be found by writting the FIC equations along the principal curvature directions of the solution. The resulting FIC-FEM formulation is equivalent in this case (for linear elements) to adding a stabilizing diffusion matrix to the standard infinitessimal equation. The stabilizing diffusion matrix depends on the signs of the solution and its derivatives and on the velocities along the principal curvature directions of the solution. This introduces a nonlinearity in the solution process. We present a simple iterative scheme based in assuming that  the main principal curvature direction at each  point is coincident with the gradient vector direction. In the last part of the paper we present a collection of 1D and 2D examples showing the effectiveness and accuracy of the new FIC-FEM formulation for different values of the advective and absorptive terms.
35
36
==2 FIC FORMULATION OF THE 1D STATIONARY ADVECTION-DIFFUSION-ABSORPTION EQUATION==
37
38
The governing equation for the 1D stationary advection-diffusion-absorption problem can be written in the FIC formulation as
39
40
{| class="formulaSCP" style="width: 100%; text-align: left;" 
41
|-
42
| 
43
{| style="text-align: left; margin:auto;" 
44
|-
45
| style="text-align: center;" | <math>r - \underline{{h\over 2} {dr\over dx}}{h\over 2} {dr\over dx}=0\quad \hbox{in } x \in (0,L) </math>
46
|}
47
| style="width: 5px;text-align: right;" | (1)
48
|}
49
50
{| class="formulaSCP" style="width: 100%; text-align: left;" 
51
|-
52
| 
53
{| style="text-align: left; margin:auto;" 
54
|-
55
| style="text-align: center;" | <math>-u\phi + k {d\phi \over dx} +q^p - \underline{{h\over 2} r}{h\over 2} r=0\quad \hbox{on }\Gamma _q  </math>
56
|}
57
| style="width: 5px;text-align: right;" | (2)
58
|}
59
60
{| class="formulaSCP" style="width: 100%; text-align: left;" 
61
|-
62
| 
63
{| style="text-align: left; margin:auto;" 
64
|-
65
| style="text-align: center;" | <math>\phi -\phi ^p =0 \quad \hbox{on }\Gamma _\phi  </math>
66
|}
67
| style="width: 5px;text-align: right;" | (3)
68
|}
69
70
where
71
72
{| class="formulaSCP" style="width: 100%; text-align: left;" 
73
|-
74
| 
75
{| style="text-align: left; margin:auto;" 
76
|-
77
| style="text-align: center;" | <math>r =:-u {d\phi \over dx} +{d\over dx} \left(k{d\phi \over dx}\right)- s\phi + Q  </math>
78
|}
79
| style="width: 5px;text-align: right;" | (4)
80
|}
81
82
In above equations <math display="inline">\phi </math> is the state variable, <math display="inline">x \in [0,L]</math> is the problem domain, <math display="inline">L</math> is the domain length, <math display="inline">u</math> is the velocity field, <math display="inline">k\ge 0</math> is the diffusion, <math display="inline">s\ge 0</math> is the absorption, dissipation or destruction source parameter, <math display="inline">Q</math> is a constant source term, <math display="inline">q^p</math> and <math display="inline">\phi ^p</math> are the prescribed values of the total flux and the unknown function at the Neumann and Dirichlet boundaries <math display="inline">\Gamma _q</math> and <math display="inline">\Gamma _\phi </math>, respectively and <math display="inline">h</math> is a ''characteristic length'' which plays the role of a stabilization parameter. In the 1D problem <math display="inline">\Gamma _\phi </math> and <math display="inline">\Gamma _q</math> consist of four combinations at the end points of the problem domain.
83
84
Eqs.(1) and (2) are obtained by expressing the balance of fluxes in an arbitrary 1D domain of finite size within the problem domain and at the Neumann boundary, respectively. The variations of the transported variables within the balance domain are approximated by Taylor series expansions retaining one order higher terms than in the infinitessimal theory [19,20]. The underlined stabilizing terms in Eqs.(1) and (2) emanate from these higher order expansions. Note that as the characteristic length parameter <math display="inline">h</math> tends to zero the FIC differential equations gradually recover the standard infinitessimal form.
85
86
Successful applications of the FIC method to a variety of problems in computational mechanics can be found in [19&#8211;30,37].
87
88
==3 FINITE ELEMENT FORMULATION==
89
90
We will construct a standard finite element discretization <math display="inline">\left\{l^e\right\}</math> of the 1D analysis domain length <math display="inline">L</math> with index <math display="inline">e</math> ranging from 1 to the number of elements <math display="inline">N</math> <span id='citeF-1'></span>[[#cite-1|1]]. The state variable <math display="inline">\phi </math> is approximated by <math display="inline">\bar \phi </math> over the analysis domain. The approximated variable <math display="inline">\bar \phi </math> is interpolated within each element with <math display="inline">n</math> nodes in the standard manner, i.e.
91
92
{| class="formulaSCP" style="width: 100%; text-align: left;" 
93
|-
94
| 
95
{| style="text-align: left; margin:auto;" 
96
|-
97
| style="text-align: center;" | <math>\phi \simeq \bar \phi \quad \hbox{for}\quad x \in [0,L]</math>
98
|}
99
| style="width: 5px;text-align: right;" |  (5a)
100
|}
101
102
with
103
104
{| class="formulaSCP" style="width: 100%; text-align: left;" 
105
|-
106
| 
107
{| style="text-align: left; margin:auto;" 
108
|-
109
| style="text-align: center;" | <math>\bar \phi =\sum \limits _{i=1}^n N_i \phi _i</math>
110
|}
111
| style="width: 5px;text-align: right;" |  (5b)
112
|}
113
114
where <math display="inline">N_i</math> are the element shape functions and <math display="inline">\phi _i</math> are nodal values of the approximate function <math display="inline">\bar \phi </math>. Substituting Eq.(5a) into Eqs.(1) and (2) gives
115
116
{| class="formulaSCP" style="width: 100%; text-align: left;" 
117
|-
118
| 
119
{| style="text-align: left; margin:auto;" 
120
|-
121
| style="text-align: center;" | <math>\bar r - {h\over 2} {d\bar r\over dx} =r_\Omega \quad \hbox{in } x\in (0,L) </math>
122
|}
123
|}
124
125
{| class="formulaSCP" style="width: 100%; text-align: left;" 
126
|-
127
| 
128
{| style="text-align: left; margin:auto;" 
129
|-
130
| style="text-align: center;" | <math>-u\bar \phi + k {d\bar \phi \over dx} +q^p - {h\over 2} \bar r=r_q\quad \hbox{on }\Gamma _q  </math>
131
|}
132
| style="width: 5px;text-align: right;" | (6)
133
|}
134
135
{| class="formulaSCP" style="width: 100%; text-align: left;" 
136
|-
137
| 
138
{| style="text-align: left; margin:auto;" 
139
|-
140
| style="text-align: center;" | <math>\bar \phi -\phi ^p =r_\phi \quad \hbox{on }\Gamma _\phi  </math>
141
|}
142
| style="width: 5px;text-align: right;" | (7)
143
|}
144
145
where <math display="inline">\bar r =r(\bar \phi )</math> and <math display="inline">r_\Omega , r_q</math> and <math display="inline">r_\phi </math> are the residuals of the approximate solution in the problem domain and on the Neumann and Dirichlet boundaries <math display="inline">\Gamma _q</math> and <math display="inline">\Gamma _\phi </math>, respectively.
146
147
The weighted residual form of Eqs.(6)&#8211;(8) is written as
148
149
{| class="formulaSCP" style="width: 100%; text-align: left;" 
150
|-
151
| 
152
{| style="text-align: left; margin:auto;" 
153
|-
154
| style="text-align: center;" | <math>\int _L W_i \left(\bar r - {h\over 2} {d\bar r\over dx}\right)dx + \left[\hat W_i \left(-u \bar \phi + k {d\bar \phi \over dx} +q_p - {h\over 2} \bar r \right)\right]_{\Gamma _q} =0 </math>
155
|}
156
| style="width: 5px;text-align: right;" | (8)
157
|}
158
159
where <math display="inline">W_i(x)</math> and <math display="inline">\hat W_i</math> are test functions satisfying <math display="inline">W_i =\hat W_i =0</math> on <math display="inline">\Gamma _\phi </math>.
160
161
Assuming smooth enough solutions and integrating by parts the term involving <math display="inline">h</math> in the first integral gives for <math display="inline">\hat W_i=-W_i</math>
162
163
{| class="formulaSCP" style="width: 100%; text-align: left;" 
164
|-
165
| 
166
{| style="text-align: left; margin:auto;" 
167
|-
168
| style="text-align: center;" | <math>\int _L W_i \bar r d x - \left[W_i \left(-u \bar \phi + k {d\bar \phi \over dx} +q^p \right)\right]_{\Gamma _q} +\sum \limits _e \int _{l^e} {h\over 2} {dW_i\over dx} \bar r dx =0</math>
169
|}
170
| style="width: 5px;text-align: right;" | (9)
171
|}
172
173
The third term in Eq.(10) is computed as the sum of the integrals over the element interiors, therefore allowing for the space derivatives of <math display="inline">\bar r</math> to be discontinuous. Also in  Eq.(10) <math display="inline">h</math> has been assumed to be constant within each element, (i.e. <math display="inline">\displaystyle{dh\over dx}=0</math> within <math display="inline">l^e</math>).
174
175
The  weak form is obtained by integrating by parts the advective and diffusive terms within <math display="inline">\bar r</math> in the first integral of Eq.(10). This gives
176
177
{| class="formulaSCP" style="width: 100%; text-align: left;" 
178
|-
179
| 
180
{| style="text-align: left; margin:auto;" 
181
|-
182
| style="text-align: center;" | <math>\int _L \left[u {dW_i\over dx} \bar \phi - {dW_i\over dx}k {d\bar \phi \over dx}- W_i s \bar \phi + W_i Q\right]dx -  [W_i q^p]_{\Gamma _q} -  \sum \limits _e \int _{l^e} \left(\beta k {dW_i\over dx} {d\bar \phi \over dx} -{h\over 2} {dW_i\over dx}Q\right)dx =0 </math>
183
|}
184
| style="width: 5px;text-align: right;" | (10)
185
|}
186
187
with
188
189
{| class="formulaSCP" style="width: 100%; text-align: left;" 
190
|-
191
| 
192
{| style="text-align: left; margin:auto;" 
193
|-
194
| style="text-align: center;" | <math>\beta = \left[{s\bar \phi \over 2k\bar \phi '}+{u\over 2k}-{\bar \phi ''\over 2\bar \phi '} \right]h </math>
195
|}
196
| style="width: 5px;text-align: right;" | (11)
197
|}
198
199
where a prime denotes the derivative with respect to the space coordinate.
200
201
Wee see clearly that the last term of Eq.(11) introduces within each element an additional diffusion of value <math display="inline">\beta k</math>.
202
203
Substituting expression (5b) into (11) and choosing a Galerkin method with <math display="inline">W_i =N_i</math> within each element gives the discrete system of FE equations written in the standard matrix form as
204
205
{| class="formulaSCP" style="width: 100%; text-align: left;" 
206
|-
207
| 
208
{| style="text-align: left; margin:auto;" 
209
|-
210
| style="text-align: center;" | <math>{K}\bar{\boldsymbol \phi } ={f} </math>
211
|}
212
| style="width: 5px;text-align: right;" | (12)
213
|}
214
215
where <math display="inline">\bar{\boldsymbol \phi }</math> is the vector of nodal unknowns and the element contributions to matrix '''K''' and vector <math display="inline">f</math> are
216
217
{| class="formulaSCP" style="width: 100%; text-align: left;" 
218
|-
219
| 
220
{| style="text-align: left; margin:auto;" 
221
|-
222
| style="text-align: right;" | <math>K_{ij}^e\!\! </math>
223
| style="text-align: center;" | <math>=</math>
224
| <math>\!\! \int _{l^e} \left(-u {dN_i\over dx} N_j + k(1+\beta ) {dN_i\over dx}{dN_j\over dx}+ sN_i N_j\right)dx</math>
225
| style="width: 5px;text-align: right;" | (13)
226
|-
227
| style="text-align: right;" | <math> f_i^e\!\! </math>
228
| style="text-align: center;" | <math>=</math>
229
| <math> \!\! \int _{l^e} \left(N_i + {h\over 2} {dN_i\over dx} \right)Qdx - (N_i q^p)_{\Gamma _q} </math>
230
| style="width: 5px;text-align: right;" | (14)
231
|}
232
|}
233
234
The amount of balancing diffusion in Eq.(14) clearly depends on the (nonlinear) stabilization parameter <math display="inline">\beta </math>. The element and critical  values of <math display="inline">\beta </math> are deduced in the next section for linear two node elements.
235
236
We note that the integral of the term <math display="inline">\displaystyle{h\over 2} \displaystyle{dN_i\over dx}Q</math> in Eq.(15) vanishes after asssembly when <math display="inline">h </math> and <math display="inline">Q</math> are uniform over a patch of linear elements.
237
238
==4 COMPUTATION OF THE STABILIZATION PARAMETER FOR LINEAR ELEMENTS==
239
240
The matrix <math display="inline">{K}^e</math> and the vector <math display="inline">{f}^e</math> for two node linear elements are (for constant values of <math display="inline">u,k</math>, <math display="inline">s</math> and <math display="inline">Q</math>)
241
242
{| class="formulaSCP" style="width: 100%; text-align: left;" 
243
|-
244
| 
245
{| style="text-align: left; margin:auto;" 
246
|-
247
| style="text-align: center;" | <math>{K}^e = - {u\over 2} \left[\begin{matrix}-1 & -1\\ 1 & 1\\\end{matrix}\right]+ {k\over l^e} (1+\beta ^e)  \left[\begin{matrix}1 & -1\\ - 1 & 1\\\end{matrix}\right]+ {sl^e \over 6} \left[\begin{matrix}2 & 1\\ 1 & 2\\\end{matrix}\right]</math>
248
|}
249
| style="width: 5px;text-align: right;" |  (16a)
250
|}
251
252
{| class="formulaSCP" style="width: 100%; text-align: left;" 
253
|-
254
| 
255
{| style="text-align: left; margin:auto;" 
256
|-
257
| style="text-align: center;" | <math>{f}^e = {Ql^e\over 2}\left\{\begin{matrix}1 - \displaystyle{h^e\over 2}\\ 1+ \displaystyle{h^e\over 2}\\\end{matrix}\right\}\qquad + \quad \hbox{boundary term}</math>
258
|}
259
| style="width: 5px;text-align: right;" |  (16a)
260
|}
261
262
In Eqs.(16) index <math display="inline">e</math> denotes element values.
263
264
Assuming <math display="inline">Q=0</math>, a typical stencil for elements of equal size <math display="inline">l</math> can be written as
265
266
{| class="formulaSCP" style="width: 100%; text-align: left;" 
267
|-
268
| 
269
{| style="text-align: left; margin:auto;" 
270
|-
271
| style="text-align: center;" | <math>\begin{array}{r}-\gamma (\bar \phi _{i+1} -\bar \phi _{i-1})-(1+\beta ) \bar \phi _{i-1}+2(1+\beta ) \bar \phi _i - (1+\beta ) \bar \phi _{i+1}+\\ + \displaystyle{w\over 6} (\bar \phi _{i-1}+ 4 \bar \phi _i + \bar \phi _{i+1})=0 \end{array} </math>
272
|}
273
| style="width: 5px;text-align: right;" | (17)
274
|}
275
276
where for simplicity a constant value of <math display="inline">\beta </math> across the mesh has been assumed. In Eq.(17) <math display="inline">\gamma ={ul\over 2k}</math> and <math display="inline">w={sl^2\over 4}</math> are the Peclet number and a velocity independent dimensionless number, respectively.
277
278
From Eq.(17) we deduce
279
280
{| class="formulaSCP" style="width: 100%; text-align: left;" 
281
|-
282
| 
283
{| style="text-align: left; margin:auto;" 
284
|-
285
| style="text-align: center;" | <math>\beta = \gamma \left({\bar \phi _{i+1} -\bar \phi _{i-1}\over \bar \phi _{i+1}- 2\bar \phi _i+  \bar \phi _{i-1} }\right)+ {w\over 6} \left({\bar \phi _{i-1} + 4 \bar \phi _i+\bar \phi _{i+1}\over \bar \phi _{i+1}- 2\bar \phi _i+ \bar \phi _{i+1} }\right)-1 </math>
286
|}
287
| style="width: 5px;text-align: right;" | (18)
288
|}
289
290
In the vecinity of a sharp gradient zone we can take
291
292
{| class="formulaSCP" style="width: 100%; text-align: left;" 
293
|-
294
| 
295
{| style="text-align: left; margin:auto;" 
296
|-
297
| style="text-align: center;" | <math>\begin{array}{l}\bar \phi _{i+1} -\bar \phi _{i-1}\simeq \bar \phi _{max} S_1\\ \bar \phi _{i+1} -2\bar \phi _i+  \bar \phi _{i-1}=\bar \phi _{max} S_2\\ \bar \phi _i+4 \bar \phi _i + \bar \phi _{i+1}= \bar \phi _{i+1}S_0 \end{array} </math>
298
|}
299
| style="width: 5px;text-align: right;" | (19)
300
|}
301
302
where <math display="inline">\bar \phi _{max}</math> is the maximum value of the approximate function <math display="inline">\bar \phi </math> in the patch of elements adjacent to the sharp gradient zone and
303
304
{| class="formulaSCP" style="width: 100%; text-align: left;" 
305
|-
306
| 
307
{| style="text-align: left; margin:auto;" 
308
|-
309
| style="text-align: center;" | <math>S_0= \hbox{sign } (\bar \phi ) ,\quad S_1 = \hbox{sign } \left({d\bar \phi \over dx}\right),\quad S_2 = \hbox{sign } \left({d^2 \bar \phi \over dx^2}\right) </math>
310
|}
311
| style="width: 5px;text-align: right;" | (20)
312
|}
313
314
where sign <math display="inline">\bar{(\cdot )}</math> denotes the sign of the magnitude within the brackets computed at the  patch mid point.
315
316
Substituting Eq.(19) into (18) leads to the following expression of the stabilization parameter
317
318
{| class="formulaSCP" style="width: 100%; text-align: left;" 
319
|-
320
| 
321
{| style="text-align: left; margin:auto;" 
322
|-
323
| style="text-align: center;" | <math>\beta = \left[\left({S_0\over S_2}\right){w\over 6} +\left({S_1\over S_2}\right)  \gamma -1\right] </math>
324
|}
325
| style="width: 5px;text-align: right;" | (21)
326
|}
327
328
The ''element stabilization parameter'' <math display="inline">\beta ^e</math> is now defined as
329
330
{| class="formulaSCP" style="width: 100%; text-align: left;" 
331
|-
332
| 
333
{| style="text-align: left; margin:auto;" 
334
|-
335
| style="text-align: center;" | <math>\begin{array}{l}\beta ^e =\beta \quad \hbox{for } \beta >0\\ \beta ^e =0 \quad \hbox{for } \beta \le 0 \end{array} </math>
336
|}
337
| style="width: 5px;text-align: right;" | (22)
338
|}
339
340
where <math display="inline">\beta </math> is given by Eq.(21) and the signs <math display="inline">S_0</math>, <math display="inline">S_1</math> and <math display="inline">S_2</math> are computed now at the element mid-point.
341
342
It is clear from above that the computation of the stabilization parameter <math display="inline">\beta ^e</math> requires the knowledge of the sign of the numerical solution <math display="inline">\bar \phi </math> and that of the  first and second derivatives of <math display="inline">\bar \phi </math> within each element. This necessarily leads to an iterative scheme. A simple algorithm which provides a stabilized and accurate solution in just two steps is presented below.
343
344
===4.1 Critical stabilization parameter and unstability conditions===
345
346
The following constant value of <math display="inline">\beta </math> over the mesh ensures a stabilized solution for all ranges of <math display="inline">\gamma </math> and <math display="inline">w</math>
347
348
{| class="formulaSCP" style="width: 100%; text-align: left;" 
349
|-
350
| 
351
{| style="text-align: left; margin:auto;" 
352
|-
353
| style="text-align: center;" | <math>\displaystyle{\beta \le \beta _c = {w\over 6} +\vert \gamma \vert -1} </math>
354
|}
355
| style="width: 5px;text-align: right;" | (23)
356
|}
357
358
where <math display="inline">\beta _c </math> is the ''critical stabilization parameter''. Note that <math display="inline">\beta _c</math> corresponds to the maximum value of <math display="inline">\beta </math> in Eq.(21) for <math display="inline">{S_0\over S_2}={S_1\over S_2}=1</math>. A mathematical proof of Eq.(23) is given in [18].
359
360
Clearly the value of <math display="inline">\beta _c</math> of Eq.(23) is meaningful only if <math display="inline">\beta _c >0</math> and this can be taken as an indicator of an unstable solution. Conversely, a value of <math display="inline">\beta _c \le 0</math> indicates that no stabilization is needed.
361
362
===4.2 Iterative solution scheme===
363
364
The following two steps iterative scheme is proposed in order to obtain a stabilized and accurate solution.
365
366
step step
367
368
Compute a first stabilized solution <math display="inline">\bar{\boldsymbol \phi }^1</math> using the critical value <math display="inline">\beta ^e = \beta _c</math> given by Eq.(23). This ensures a stabilized, although sometimes slightly overdiffusive, solution.
369
370
==~&nbsp;==
371
372
step
373
374
Compute the signs of the first and second derivatives of <math display="inline">\bar{\boldsymbol \phi }^1</math> within each element. The second derivative field is obtained as follows
375
376
{| class="formulaSCP" style="width: 100%; text-align: left;" 
377
|-
378
| 
379
{| style="text-align: left; margin:auto;" 
380
|-
381
| style="text-align: center;" | <math>\left({d^2 \bar \phi ^1 \over dx^2}\right)^e= {1\over l^e} \left[\left({d\hat \phi ^1 \over dx}\right)^e_2 - \left({d\hat \phi ^1 \over dx}\right)^e_1\right] </math>
382
|}
383
| style="width: 5px;text-align: right;" | (24)
384
|}
385
386
where <math display="inline">({\hat \cdot })_i^e</math> denotes averaged values of the first derivative at node <math display="inline">i</math> of element <math display="inline">e</math>. At the boundary nodes the constant value of the derivative of <math display="inline">\bar \phi </math> within the element is taken in Eq.(24); i.e. <math display="inline">(\hat{\cdot })_i^e = \left({d\bar \phi \over dx}\right)^{(e)} = {\bar \phi _2 - \bar \phi _1 \over l^e}</math>.
387
388
Compute the enhanced stabilized solution <math display="inline">{\boldsymbol \phi }^2</math> using the element value of <math display="inline">\beta ^e</math> given by Eq.(22).
389
390
In all the 1D examples solved the above two steps have sufficed to obtain a converged stabilized and accurate solution [18]. The reason of this is that  the signs of the first and second derivative fields typically do not change any further after the second step over the elements adjacent to high gradient zones.
391
392
==5 EXTENSION TO MULTI-DIMENSIONAL PROBLEMS==
393
394
Consider the general steady-state advection-diffusion-reaction equation written for the zero constant source case (<math display="inline">Q=0</math>) as
395
396
<span id="eq-25"></span>
397
{| class="formulaSCP" style="width: 100%; text-align: left;" 
398
|-
399
| 
400
{| style="text-align: left; margin:auto;" 
401
|-
402
| style="text-align: center;" | <math>r(\phi ): =- {u}^T {\boldsymbol \nabla } \phi + {\boldsymbol \nabla }^T {D}{\boldsymbol \nabla }\phi - s\phi =0 </math>
403
|}
404
| style="width: 5px;text-align: right;" | (25)
405
|}
406
407
For 2D problems
408
409
<span id="eq-26"></span>
410
{| class="formulaSCP" style="width: 100%; text-align: left;" 
411
|-
412
| 
413
{| style="text-align: left; margin:auto;" 
414
|-
415
| style="text-align: center;" | <math>{u}=[u,v]^T\quad ,\quad {\boldsymbol \nabla }=\left[{\partial  \over \partial x},{\partial  \over \partial y}\right]^T\quad ,\quad {D} =k \left[\begin{matrix}1 &0\\ 0&1\\\end{matrix}\right] </math>
416
|}
417
| style="width: 5px;text-align: right;" | (26)
418
|}
419
420
are respectively the velocity vector, the gradient vector and the diffusivity matrix, respectively. For simplicity we have assumed an isotropic diffusion matrix.
421
422
The FIC form of Eq.([[#eq-25|25]]) is written as
423
424
<span id="eq-27"></span>
425
{| class="formulaSCP" style="width: 100%; text-align: left;" 
426
|-
427
| 
428
{| style="text-align: left; margin:auto;" 
429
|-
430
| style="text-align: center;" | <math>r - \underline{{1\over 2} {h}^T {\boldsymbol \nabla }r}{1\over 2} {h}^T {\boldsymbol \nabla }r=0 </math>
431
|}
432
| style="width: 5px;text-align: right;" | (27)
433
|}
434
435
where <math display="inline">r</math> is the original infinitessimal differential equation as defined in Eq.([[#eq-25|25]]).
436
437
The Dirichlet and boundary conditions of the FIC formulation are
438
439
<span id="eq-28"></span>
440
{| class="formulaSCP" style="width: 100%; text-align: left;" 
441
|-
442
| 
443
{| style="text-align: left; margin:auto;" 
444
|-
445
| style="text-align: center;" | <math>\phi - \phi ^p =0 \quad \hbox{on}\quad \Gamma _\phi   </math>
446
|}
447
| style="width: 5px;text-align: right;" | (28)
448
|}
449
450
<span id="eq-29"></span>
451
{| class="formulaSCP" style="width: 100%; text-align: left;" 
452
|-
453
| 
454
{| style="text-align: left; margin:auto;" 
455
|-
456
| style="text-align: center;" | <math>- {u}^T {n}\phi + {n}^T {D} {\boldsymbol \nabla } \phi + q^p - \underline{{1\over 2} {h}^T {n}r}{1\over 2} {h}^T {n}r=0 \quad \hbox{on}\quad \Gamma _q </math>
457
|}
458
| style="width: 5px;text-align: right;" | (29)
459
|}
460
461
where <math display="inline">n</math> is the normal vector to the boundary where the normal flux is prescribed. As usual index <math display="inline">p</math> denotes the prescribed values.
462
463
In Eqs.([[#eq-27|27]]) and ([[#eq-29|29]]) <math display="inline">{h}=[h_x,h_y]^T</math> is the characteristic vector of the 2D FIC formulation which components play the role of stabilization parameters. The underlined terms in Eqs.([[#eq-27|27]]) and ([[#eq-29|29]]) introduce the necessary stability in the numerical solution [19,20,21].
464
465
If vector '''h'''  is taken to be parallel to the velocity '''u''' the standard SUPG method is recovered [18&#8211;23]. The more general form of '''h''' allows to obtain stabilized finite element solutions in the presence of strong gradients of <math display="inline">\phi </math> near the boundaries (boundary layers) and within the analysis domain (internal layers) <span id='citeF-27'></span>[[#cite-27|27]].  The FIC formulation therefore reproduces the best features of the so called shock-capturing or transverse-dissipation schemes <span id='citeF-2'></span>[[#cite-2|2]].
466
467
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
468
|-
469
|[[Image:draft_Samper_447243531-Figure1.png|600px|Global axes (x,y) and principal curvature axes (ξ,η)]]
470
|- style="text-align: center; font-size: 75%;"
471
| colspan="1" | Global axes (<math>x,y</math>) and principal curvature axes (<math>\xi ,\eta </math>)
472
|}
473
474
Let us write down the FIC balance equation  in the principal curvature axes of the solution <math display="inline">\xi ,\eta </math> (Figure 1). The FIC balance equation is
475
476
{| class="formulaSCP" style="width: 100%; text-align: left;" 
477
|-
478
| 
479
{| style="text-align: left; margin:auto;" 
480
|-
481
| style="text-align: right;" | 
482
| style="text-align: center;" | 
483
| <math>-u_\xi {\partial \phi  \over \partial \xi }-u_\eta {\partial \phi  \over \partial \eta }+k \left({\partial ^2\phi \over \partial \xi ^2}+ {\partial ^2\phi \over \partial \eta ^2}\right)-s\phi - {h_\xi \over 2} {\partial  \over \partial \xi }\left[-u_\xi {\partial \phi  \over \partial \xi }-u_\eta {\partial \phi  \over \partial \eta }+ k \left({\partial ^2\phi \over \partial \xi ^2}+ {\partial ^2\phi \over \partial \eta ^2}\right)-s\phi \right]</math>
484
|-
485
| style="text-align: right;" | 
486
| style="text-align: center;" | 
487
| <math> - {h_\eta \over 2} {\partial  \over \partial \eta } \left[-u_\xi {\partial \phi  \over \partial \xi }-u_\eta {\partial \phi  \over \partial \eta }+ k \left({\partial ^2\phi \over \partial \xi ^2}+ {\partial ^2\phi \over \partial \eta ^2}\right)-s\phi \right]=0 </math>
488
|}
489
| style="width: 5px;text-align: right;" | (30)
490
|}
491
492
where <math display="inline">u_\xi , u_\eta </math> are the velocities along the principal axes of curvature <math display="inline">\xi </math> and <math display="inline">\eta </math>, respectively.
493
494
As <math display="inline">\xi </math> and <math display="inline">\eta </math> are the principal curvature axes of the solution then
495
496
{| class="formulaSCP" style="width: 100%; text-align: left;" 
497
|-
498
| 
499
{| style="text-align: left; margin:auto;" 
500
|-
501
| style="text-align: center;" | <math>{\partial ^2\phi \over \partial \xi \partial \eta }= {\partial ^2\phi \over \partial \eta \partial \xi }=0 </math>
502
|}
503
| style="width: 5px;text-align: right;" | (31)
504
|}
505
506
Introducing this simplification into Eq.(30) we can rewrite this equation as
507
508
{| class="formulaSCP" style="width: 100%; text-align: left;" 
509
|-
510
| 
511
{| style="text-align: left; margin:auto;" 
512
|-
513
| style="text-align: center;" | <math>\begin{array}{l} -u_\xi \displaystyle {\partial \phi  \over \partial \xi }-u_\eta {\partial \phi  \over \partial \eta }+\left(k + {u_\xi h_\xi \over 2}+ {sh_\xi \over 2} {\partial \phi \over \partial \xi } \left({\partial ^2\phi \over \partial \xi ^2} \right)^{-1}  \right){\partial ^2\phi \over \partial \xi ^2} +\\ \displaystyle + \left(k + {u_\eta h_\eta \over 2}+ {sh_\eta \over 2} {\partial \phi \over \partial \eta } \left({\partial ^2\phi \over \partial \eta ^2} \right)^{-1}\right){\partial ^2\phi \over \partial \eta ^2} - s\phi - k \left({h_\xi \over 2}{\partial ^3 \phi \over \partial \xi ^3}+  {h_\eta \over 2} {\partial ^3 \phi \over \partial \eta ^3}\right)=0 \end{array}</math>
514
|}
515
| style="width: 5px;text-align: right;" |  (32a)
516
|}
517
518
or
519
520
{| class="formulaSCP" style="width: 100%; text-align: left;" 
521
|-
522
| 
523
{| style="text-align: left; margin:auto;" 
524
|-
525
| style="text-align: center;" | <math> -u_\xi {\partial \phi  \over \partial \xi }-u_\eta {\partial \phi  \over \partial \eta }+ k(1+\beta _\xi ) {\partial ^2\phi \over \partial \xi ^2} + k (1+\beta _\eta ) {\partial ^2\phi \over \partial \eta ^2} - s\phi -k \left({h_\xi \over 2}{\partial ^3 \phi \over \partial \xi ^3}+  {h_\eta \over 2} {\partial ^3 \phi \over \partial \eta ^3}\right)=0</math>
526
|}
527
| style="width: 5px;text-align: right;" |  (32b)
528
|}
529
530
We can see clearly from Eq.(33) that the FIC governing equations introduce orthotropic diffusion parameters  of values <math display="inline">{\beta _\xi k }</math> and <math display="inline"> { \beta _\eta k}</math> along the <math display="inline">\xi </math> and <math display="inline">\eta </math> axes, respectively with
531
532
{| class="formulaSCP" style="width: 100%; text-align: left;" 
533
|-
534
| 
535
{| style="text-align: left; margin:auto;" 
536
|-
537
| style="text-align: center;" | <math>\beta _\xi = {u_\xi h_\xi \over 2k} + {sh_\xi \over 2k} {\partial \phi  \over \partial \xi } \left({\partial ^2\phi \over \partial \xi ^2} \right)^{-1},\quad \beta _\eta ={u_\xi h_\xi \over 2k} + {sh_\eta \over 2k} {\partial \phi  \over \partial \eta } \left({\partial ^2\phi \over \partial \eta ^2} \right)^{-1} </math>
538
|}
539
| style="width: 5px;text-align: right;" |  (33)
540
|}
541
542
Also note that the last term of Eq.(32b) will vanish after discretization for linear elements.
543
544
Eq.(32b) can be rewritten in matrix form (neglecting the last term) as
545
546
{| class="formulaSCP" style="width: 100%; text-align: left;" 
547
|-
548
| 
549
{| style="text-align: left; margin:auto;" 
550
|-
551
| style="text-align: center;" | <math>- {u}^{\prime T} {\boldsymbol \nabla }^\prime \phi + {\boldsymbol \nabla }^{\prime T} ({D}+\bar {D}^\prime ) {\boldsymbol \nabla }^{\prime }\phi - s\phi =0 </math>
552
|}
553
|}
554
555
where <math display="inline">{u}^\prime =[u_\xi , u_\eta ]^T</math>, <math display="inline">{\boldsymbol \nabla }^\prime = \left[{\partial \over \partial \xi }, {\partial \over \partial \eta }\right]^T</math>, <math display="inline">D</math> is the “physical” isotropic diffusion matrix and <math display="inline">\bar {D}'</math> is the balancing diffusion matrix in the local axes <math display="inline">\xi </math> and <math display="inline">\eta </math>. The form of this matrix is
556
557
{| class="formulaSCP" style="width: 100%; text-align: left;" 
558
|-
559
| 
560
{| style="text-align: left; margin:auto;" 
561
|-
562
| style="text-align: center;" | <math>\bar {D}^\prime = \left[\begin{array}{cc}\beta _\xi k& 0\\ 0 &\beta _\eta k \end{array}\right] </math>
563
|}
564
| style="width: 5px;text-align: right;" | (34)
565
|}
566
567
The velocities  along the principal curvature axes <math display="inline">u_\xi </math> and <math display="inline">u_\eta </math> can be obtained by projecting the cartesian velocities into the principal curvature axes <math display="inline">\xi </math> and <math display="inline">\eta </math> as
568
569
{| class="formulaSCP" style="width: 100%; text-align: left;" 
570
|-
571
| 
572
{| style="text-align: left; margin:auto;" 
573
|-
574
| style="text-align: center;" | <math>{u}'=\left\{\begin{array}{c}u_\xi \\ u_\eta \end{array}\right\}= {T} {u}  \quad \hbox{with}\quad {T}= \left[\begin{array}{cc}c_\alpha & s_\alpha \\ - s_\alpha & c_\alpha \end{array}\right]\quad ,\quad {u}=\left\{\begin{array}{c}u\\v\end{array}\right\} </math>
575
|}
576
| style="width: 5px;text-align: right;" | (35)
577
|}
578
579
where <math display="inline">c_\alpha =\cos \alpha </math>, <math display="inline">s_\alpha =\sin \alpha </math> and <math display="inline">\alpha </math> is the angle which the <math display="inline">\xi </math> axis forms with the <math display="inline">x</math> axis (Figure 1). Note that as the solution is continuous the principal curvature directions <math display="inline">\xi </math> and <math display="inline">\eta </math> are orthogonal.
580
581
The values of <math display="inline">\beta _\xi </math> and <math display="inline">\beta _\eta </math> are  computed by considering the solution of two uncoupled 1D problems along the <math display="inline">\xi </math> and <math display="inline">\eta </math> directions. This gives from Eqs.(21) and (22)
582
583
{| class="formulaSCP" style="width: 100%; text-align: left;" 
584
|-
585
| 
586
{| style="text-align: left; margin:auto;" 
587
|-
588
| style="text-align: center;" | <math>\beta _\xi = \left[\left({S_0\over S_{\xi _2}}\right){w_\xi \over 6} +  \left({S_{\xi _1}\over S_{\xi _2}}\right)\gamma _\xi -1\right]\quad ,\quad \gamma _\xi = {u_\xi l_\xi \over 2k} \quad ,\quad  w_\xi = {sl^2_\xi \over k}</math>
589
|}
590
| style="width: 5px;text-align: right;" |  (37a)
591
|}
592
593
{| class="formulaSCP" style="width: 100%; text-align: left;" 
594
|-
595
| 
596
{| style="text-align: left; margin:auto;" 
597
|-
598
| style="text-align: center;" | <math>\beta _\eta = \left[\left({S_0\over S_{\eta _2}}\right){w_\eta \over 6} +  \left({S_{\eta _1}\over S_{\eta _2}}\right)\gamma _\eta -1\right]\quad ,\quad \gamma _\eta = {u_\eta l_\eta \over 2k} \quad ,\quad  w_\eta = {sl^2_\eta \over k} </math>
599
|}
600
| style="width: 5px;text-align: right;" |  (37b)
601
|}
602
603
where
604
605
{| class="formulaSCP" style="width: 100%; text-align: left;" 
606
|-
607
| 
608
{| style="text-align: left; margin:auto;" 
609
|-
610
| style="text-align: center;" | <math>\begin{array}{l}S_0 =\hbox{sign }(\bar \phi ) \quad ,\quad S_{\xi _1}= \hbox{sign } \left(\displaystyle{\partial \bar \phi \over \partial \xi }\right)\quad ,\quad  S_{\xi _2}= \hbox{sign } \left(\displaystyle{\partial ^2 \bar \phi \over \partial \xi ^2}\right)\\ S_{\eta _1}= \hbox{sign } \left(\displaystyle{\partial \bar \phi \over \partial \eta }\right)\quad ,\quad  S_{\eta _2}= \hbox{sign } \left(\displaystyle{\partial ^2 \bar \phi \over \partial \eta ^2}\right) \end{array} </math>
611
|}
612
| style="width: 5px;text-align: right;" | (38)
613
|}
614
615
and <math display="inline">\bar \phi </math> is as usual the approximate solution.
616
617
The lengths <math display="inline">l_\xi </math> and <math display="inline">l_\eta </math> are taken as the maximum projection of the velocities <math display="inline">u_\xi </math> and <math display="inline">u_\eta </math> along the element sides (for triangles) and the element diagonals (for quadrilaterals), i.e.
618
619
{| class="formulaSCP" style="width: 100%; text-align: left;" 
620
|-
621
| 
622
{| style="text-align: left; margin:auto;" 
623
|-
624
| style="text-align: center;" | <math>l_i =\max ({d}_j^T {u}_i)\quad ,\quad i=\xi ,\eta </math>
625
|}
626
| style="width: 5px;text-align: right;" |  (39a)
627
|}
628
629
with
630
631
{| class="formulaSCP" style="width: 100%; text-align: left;" 
632
|-
633
| 
634
{| style="text-align: left; margin:auto;" 
635
|-
636
| style="text-align: center;" | <math>\begin{array}{ll}j=1,2,3 \hbox{ (for triangles) and }\\ j=1,2 \hbox{ (for quadrilaterals)}\end{array}</math>
637
|}
638
| style="width: 5px;text-align: right;" |  (39b)
639
|}
640
641
In Eq.(39a) <math display="inline">{u}_\xi </math> and <math display="inline">{u}_\eta </math> contain the global components of the  velocity vectors <math display="inline">\vec u_\xi </math> and <math display="inline">\vec u_\eta </math>, respectively. For triangles <math display="inline">{d}_j</math> are the element side vectors, whereas for quadrilaterals <math display="inline">{d}_j</math> are the element diagonal vectors <span id='citeF-27'></span>[[#cite-27|27]].
642
643
The next step is to transform Eq.(34) to global axes <math display="inline">x,y</math>. The resulting equation is
644
645
{| class="formulaSCP" style="width: 100%; text-align: left;" 
646
|-
647
| 
648
{| style="text-align: left; margin:auto;" 
649
|-
650
| style="text-align: center;" | <math>-{u}^T {\boldsymbol \nabla }\phi +{\boldsymbol \nabla }^T {D}_G {\boldsymbol \nabla }\phi -s\phi=0 </math>
651
|}
652
|}
653
654
where the global diffusion matrix <math display="inline">{D}_G</math> is given by
655
656
{| class="formulaSCP" style="width: 100%; text-align: left;" 
657
|-
658
| 
659
{| style="text-align: left; margin:auto;" 
660
|-
661
| style="text-align: center;" | <math>{D}_G={D}+\bar{D}</math>
662
|}
663
| style="width: 5px;text-align: right;" | (41a)
664
|}
665
666
where the global balancing diffusion matrix <math display="inline">\bar{D}</math> is
667
668
{| class="formulaSCP" style="width: 100%; text-align: left;" 
669
|-
670
| 
671
{| style="text-align: left; margin:auto;" 
672
|-
673
| style="text-align: center;" | <math>\bar {D} = {T}^T \bar {D}^\prime {T}</math>
674
|}
675
| style="width: 5px;text-align: right;" | (41b)
676
|}
677
678
===Remark===
679
680
Similarly as for the 1D problems, a negative value of the parameters <math display="inline">\beta _\xi </math> and <math display="inline">\beta _\eta </math> indicates that no stabilization is needed along the directions <math display="inline">\xi </math> and <math display="inline">\eta </math>, respectively. A zero value of the corresponding stabilization parameter is chosen in this case.
681
682
===Remark===
683
684
The expressions of <math display="inline">\beta _\xi </math> and <math display="inline">\beta _\eta </math> in Eq.(37) can be simplified to
685
686
{| class="formulaSCP" style="width: 100%; text-align: left;" 
687
|-
688
| 
689
{| style="text-align: left; margin:auto;" 
690
|-
691
| style="text-align: center;" | <math>\begin{array}{l}\beta _\xi \simeq \beta _{\xi _c} =\left[\displaystyle{w_\xi \over 6} +|\gamma _\xi | -1\right]\\ \beta _\eta \simeq \beta _{\eta _c} =\left[\displaystyle{w_\eta \over 6} +|\gamma _\eta | -1\right] \end{array} </math>
692
|}
693
| style="width: 5px;text-align: right;" | (42)
694
|}
695
696
This avoids the computation of the sign of the solution and of its first and second derivatives. The expressions of <math display="inline">\beta _{\xi _c}</math> and <math display="inline">\beta _{\eta _c}</math> in Eq.(42) are equivalent to that of the 1D critical stabilization parameter <math display="inline">\beta _c</math> of Eq.(23). The main difference is that the computation of the local directions <math display="inline">\xi </math> and <math display="inline">\eta </math> is still mandatory in the multidimensional case and, therefore, the nonlinearity of the process can not be avoided here.
697
698
===5.1 Computation of the principal curvature axes for linear elements===
699
700
Excellent results have been obtained in our work ''by approximating the main  curvature direction <math>\vec \xi </math> by the direction of the gradient vector'' <math display="inline">{\boldsymbol \nabla } \phi </math>.
701
702
This simplification allows us to estimate the direction <math display="inline">\vec {\xi }</math> in a very economical manner as the gradient vector <math display="inline">{\boldsymbol \nabla } \bar \phi </math> can be directly computed at any point of a linear element. Direction <math display="inline">\vec {\eta }</math> is taken orthogonal to that of <math display="inline">\vec {\xi }</math> in an anti-clockwise sense.
703
704
For linear triangles <math display="inline">{\boldsymbol \nabla }\bar \phi </math> is constant within the element. For four node quadrilaterals <math display="inline">{\boldsymbol \nabla } \bar \phi </math> varies linearly. We have assumed in this case that the direction of <math display="inline">\vec \xi </math> is constant within the element and equal to the direction of vector <math display="inline">{\boldsymbol \nabla } \bar \phi </math> computed at the element center.
705
706
The computation of the signs of the second derivative of <math display="inline">\bar \phi </math> in Eq.(38) involves the following steps: 1) recovery of the cartesian first derivative field at the nodes using a nodal averaging procedure; 2) computation of the second derivative tensor at the element center and 3) transformation of this tensor to the local axes <math display="inline">\xi </math> and <math display="inline">\eta </math>.
707
708
We note that in problems where positive values of <math display="inline">\bar \phi </math> are prescribed at the Dirichlet boundary, the signs of <math display="inline">S_{\xi _2}</math>, <math display="inline">S_{\eta _2}</math> are positive due to the convexity of the numerical solution.
709
710
As mentioned above the dependence of the balancing diffusion matrix <math display="inline">\bar{D}</math> with the principal  curvature directions <math display="inline">\vec \xi </math> and <math display="inline">\vec {\eta }</math> introduces a nonlinearity in the solution process. A simple and effective iterative algorithm is described next.
711
712
===5.2 General iterative scheme===
713
714
A stabilized numerical solution can be found by the following algorithm.
715
716
'''Step 1''' . For elements in the interior of the domain choose <math display="inline">{}^1{\boldsymbol \xi } ={u}</math>, i.e. the gradient direction is taken coincident with the velocity direction. If <math display="inline">{u}=0</math> then <math display="inline">{}^1{\boldsymbol \xi }</math> is taken coincident with the global <math display="inline">{x}</math> axis.
717
718
In elements adjacent to a boundary choose <math display="inline">{}^1{\boldsymbol \xi } ={n }</math> where '''n ''' is the normal to the boundary.
719
720
Compute <math display="inline">{}^1{\boldsymbol \eta }, {}^1\bar  {D}'</math>, <math display="inline">{}^1\bar  {D}</math> and <math display="inline">{}^1{D}_G</math> using the expressions of <math display="inline">\beta _\xi </math> and <math display="inline">\beta _\eta </math> from Eq.(42).
721
722
Solve for <math display="inline">{}^1\bar{\boldsymbol \phi }</math>.
723
724
Verify that the solution is stable. This implies that there are not undershoots or overshoots in the numerical results with respect to the expected physical values. If the numerical solution is unstable, then go to step 2.
725
726
'''Step 2''' . For all elements, compute at the element center <math display="inline">{}^2{\boldsymbol \xi } = {\boldsymbol \nabla }^1\bar \phi </math>. Then compute <math display="inline">{}^2{\boldsymbol \eta } , {}^2\bar{D}'</math>, <math display="inline">{}^2\bar  {D}</math> and <math display="inline">{}^2{D}_G</math> using the expressions of <math display="inline">\beta _\xi </math> and <math display="inline">\beta _\eta </math> from Eqs.(37).
727
728
Solve for <math display="inline">{}^2\bar{\boldsymbol \phi }</math>.
729
730
'''Step 3''' . Estimate the convergence of the process. We have chosen the following convergence norm
731
732
{| class="formulaSCP" style="width: 100%; text-align: left;" 
733
|-
734
| 
735
{| style="text-align: left; margin:auto;" 
736
|-
737
| style="text-align: center;" | <math>\Vert \phi \Vert = {1\over N\bar \phi _{max}} \left[\sum \limits _{j=1}^n \left({}^{i}\bar \phi _j - {}^{i-1}\bar \phi _j \right)^2 \right]^{1/2} \le \varepsilon  </math>
738
|}
739
| style="width: 5px;text-align: right;" | (43)
740
|}
741
742
where <math display="inline">N</math> is the total number of nodes in the mesh and <math display="inline">\phi _{max}</math> is the maximum prescribed value at the Dirichlet boundary (if <math display="inline">\bar \phi _{max}=0</math> then <math display="inline">\bar  \phi _{max}=1</math>). In above steps the left upper indices denote the iteration number.
743
744
In the examples shown in the next section <math display="inline">\varepsilon =10^{-3}</math> has been taken.
745
746
If condition (43) is not satisfied, repeat steps 2 and 3 until convergence.
747
748
===Remark===
749
750
For the advective-diffusive problems (i.e. <math display="inline">s=0</math>) the  expression of the balancing diffusion matrix in the interior elements for step 1 coincides with the standard (linear) SUPG form <span id='citeF-27'></span>[[#cite-27|27]].
751
752
===Remark===
753
754
An  alternative solution scheme is to use a time relaxation technique based in the solution of a pseudo transient problem with a forward Euler scheme and a diagonal mass matrix.
755
756
==6 1D NUMERICAL EXAMPLES==
757
758
The examples presented in this section are solved in a 1D domain discretized with eight two-node linear elements of unit size. The examples are solved with the same Dirichlet conditions <math display="inline">\phi _1^p =8</math> and <math display="inline">\phi _9^p=3</math> and two different values of <math display="inline">\gamma </math> and <math display="inline">w</math> (<math display="inline">\gamma =1, w=20</math> and <math display="inline">\gamma =10, w=20</math>). We note that for both cases the instability condition (<math display="inline">\beta _c>0</math>) is violated and, hence, the Galerkin solution should yield non-physical results.
759
760
Figures 2 and 3 show the numerical results obtained with the standard  Galerkin method (<math display="inline">\beta =0</math>) and using the element (<math display="inline">\beta ^e</math>) and critical (<math display="inline">\beta _c</math>) values of the stabilization parameter  given by Eqs.(22) and (23), respectively. The exact analytical solution is also shown for comparison.
761
762
Table 1 shows the nodal values of the results of the example of Figure 3 for comparison with the 2D solutions presented in the next section.
763
764
The following conclusions are drawn from the 1D results.
765
766
<ol>
767
768
<li>The Galerkin solution (<math display="inline">\beta =0</math>) is unstable for both problems, as expected. </li>
769
770
<li>The solution obtained with the critical value <math display="inline">\beta _c</math> is always stable, although it yields slightly overdiffusive results in both cases. </li>
771
772
<li>The results obtained with <math display="inline">\beta ^e</math>  are less diffusive and more accurate than those obtained with <math display="inline">\beta _c</math>. The explanation is that the sign of the ratio <math display="inline">{S_1/S_2}</math> is negative in the region close to the left end point of the domain. This naturally reduces the value of the stabilizing diffusion parameter <math display="inline">\beta </math> in Eq.(21) with respect to that of <math display="inline">\beta _c</math> in Eq.(23) where the sign effect is not relevant.  </li>
773
774
<li>The FIC algorithm provides a stabilized solution for Dirichlet problems when there is a negative streamwise gradient of the solution. This is an advantage versus SUPG, GLS and SGS methods using a single stabilization parameter which fail in some cases for these type of problems <span id='citeF-12'></span>[[#cite-12|12]]. </li>
775
776
</ol>
777
778
Above conclusions have been confirmed in the solution of a wider collection of 1D problems presented in [18].
779
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
780
|-
781
|[[Image:draft_Samper_447243531-Fig2.png|600px|ϕ₁<sup>p</sup>=8, ϕ₉<sup>p</sup>=3, γ=1 and ω=20. FIC results for a mesh of 8 linear elements obtained for β=0 (Galerkin), β<sup>e</sup> and β<sub>c</sub>. Comparison with the analytical solution.]]
782
|- style="text-align: center; font-size: 75%;"
783
| colspan="1" | <math>\phi _1^p=8, \phi _9^p =3, \gamma =1</math> and <math>\omega =20</math>. FIC results for a mesh of 8 linear elements obtained for <math>\beta =0</math> (Galerkin), <math>\beta ^e</math> and <math>\beta _c</math>. Comparison with the analytical solution.
784
|}
785
786
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
787
|-
788
|[[Image:draft_Samper_447243531-Fig6.png|600px|ϕ₁<sup>p</sup>=8, ϕ₉<sup>p</sup>=3, γ=10 and ω=20. FIC results for a mesh of 8 linear elements obtained for β=0 (Galerkin), β<sup>e</sup> and β<sub>c</sub>. Comparison with the analytical solution.]]
789
|- style="text-align: center; font-size: 75%;"
790
| colspan="1" | <math>\phi _1^p =8, \phi _9^p =3, \gamma =10</math> and <math>\omega =20</math>. FIC results for a mesh of 8 linear elements obtained for <math>\beta =0</math> (Galerkin), <math>\beta ^e</math> and <math>\beta _c</math>. Comparison with the analytical solution.
791
|}
792
793
==7 2D EXAMPLES==
794
795
The analysis domain in the  first two 2D examples presented is a square of size 8 units. The problems are solved first with relatively coarse meshes of <math display="inline">8\times 8</math> four node bi-linear square elements and <math display="inline">8\times 8\times 2</math> linear triangles.
796
797
The boundary conditions for both examples are <math display="inline">\phi ^p =8</math> and <math display="inline">\phi ^p =3</math> at the boundaries <math display="inline">x=0</math> and <math display="inline">x=8</math>, respectively and zero normal flux at <math display="inline">y=0</math> and <math display="inline">y=8</math>. This reproduces the condition of the two 1D examples solved in the previous section. The first example is analized for <math display="inline">{u} = [2,0]^T</math>, <math display="inline">k=1</math> and <math display="inline">s=20</math> giving <math display="inline">w=20</math>, <math display="inline">\gamma _x=1</math> and <math display="inline">\gamma _y=0</math> which corresponds to the first 1D example (Figure 2). The correct solution for this problem has a boundary layer in the vecinity of the  two sides at <math display="inline">x=0</math> and <math display="inline">x=8</math> where <math display="inline">\phi </math> is prescribed (Figure 4). The numerical results obtained with the standard  Galerkin solution  are oscillatory as expected. The stabilized FIC formulation elliminates the oscillations and yields the correct physical solution. Good results are obtained for both meshes of linear rectangles and triangles (Figures 4 and 5).
798
799
Results labelled as FIC-1 and FIC-2 in the figures correspond to those obtained in the first and second iteration of the algorithm presented in Section 5.2, respectively. We note that the FIC-1 results agree precisely with those obtained in the 1D case for <math display="inline">\beta =\beta _c</math>, whereas the FIC-2 results agree with the more accurate 1D values obtained with the element stabilization parameter <math display="inline">\beta ^e</math> (see Figure 2).
800
801
The second example is similar to the first one with <math display="inline">{u} =[20,0]^T</math>, <math display="inline">k=1</math> and <math display="inline">s=20</math> giving <math display="inline">w=20</math>, <math display="inline">\gamma _x =10</math> and <math display="inline">\gamma _y =0</math>. These values correspond to the second 1D problem of the previous section (Figure 3). The Galerkin solution is again oscillatory, whereas the FIC results are physically sound (Figures 6 and 7). Once more  the FIC-1 and FIC-2 results  are in good agreement with the 1D values shown in Figure 3 for <math display="inline">\beta _c</math> and <math display="inline">\beta _e</math>, respectively for both meshes of square and triangular elements. The coincidence of the 1D and 2D results for this problem can be clearly seen in Table 1.
802
803
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
804
|-
805
|[[Image:draft_Samper_447243531-Figura4a.png|600px|]]
806
|-
807
|[[Image:draft_Samper_447243531-Figura4b.png|600px|2D advection-conduction-absorption problem over a square domain of size equal to 8 units. ϕ<sup>p</sup>=8 at x=0, ϕ<sup>p</sup>=3 at x=8, qₙ=0 at y=0 and y=8. u = [2,0]<sup>T</sup>, k=1, s=20, w=20, γₓ=1 and γ<sub>y</sub>= 0. Galerkin and FIC solutions for a mesh of 8 ×8 four node square elements.]]
808
|- style="text-align: center; font-size: 75%;"
809
| colspan="1" | 2D advection-conduction-absorption problem over a square domain of size equal to 8 units. <math>\phi ^p =8</math> at <math>x=0</math>, <math>\phi ^p =3</math> at <math>x=8</math>, <math>q_n =0</math> at <math>y=0</math> and <math>y=8</math>. <math>{u} = [2,0]^T</math>, <math>k=1</math>, <math>s=20</math>, <math>w=20</math>, <math>\gamma _x=1</math> and <math>\gamma _y= 0</math>. Galerkin and FIC solutions for a mesh of <math>8 \times 8</math> four node square elements.
810
|}
811
812
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
813
|-
814
|[[Image:draft_Samper_447243531-Figura5a.png|600px|]]
815
|-
816
|[[Image:draft_Samper_447243531-Figura5b.png|600px|Solution of problem of Figure 4 with a mesh of 8 ×8×2 linear triangles.]]
817
|- style="text-align: center; font-size: 75%;"
818
| colspan="1" | Solution of problem of Figure 4 with a mesh of <math>8 \times 8\times 2</math> linear triangles.
819
|}
820
821
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
822
|-
823
|[[Image:draft_Samper_447243531-Figura6a.png|600px|]]
824
|-
825
|[[Image:draft_Samper_447243531-Figura6b.png|600px|2D advection-conduction-absorption problem over a square domain of size equal to 8 units. ϕ<sup>p</sup>=8 at x=0, ϕ<sup>p</sup>=3 at x=8, qₙ=0 at y=0 and y=8. u = [20,0]<sup>T</sup>, k=1, s=20, w=20, γₓ=10 and γ<sub>y</sub>= 0. Galerkin and FIC solutions for a mesh of 8 ×8 four node square elements.]]
826
|- style="text-align: center; font-size: 75%;"
827
| colspan="1" | 2D advection-conduction-absorption problem over a square domain of size equal to 8 units. <math>\phi ^p =8</math> at <math>x=0</math>, <math>\phi ^p =3</math> at <math>x=8</math>, <math>q_n =0</math> at <math>y=0</math> and <math>y=8</math>. <math>{u} = [20,0]^T</math>, <math>k=1</math>, <math>s=20</math>, <math>w=20</math>, <math>\gamma _x=10</math> and <math>\gamma _y= 0</math>. Galerkin and FIC solutions for a mesh of <math>8 \times 8</math> four node square elements.
828
|}
829
830
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
831
|-
832
|[[Image:draft_Samper_447243531-Figura7a.png|600px|]]
833
|-
834
|[[Image:draft_Samper_447243531-Figura7b.png|600px|Solution of problem of Figure 5 with a mesh of 8 ×8×2 linear triangles.]]
835
|- style="text-align: center; font-size: 75%;"
836
| colspan="1" | Solution of problem of Figure 5 with a mesh of <math>8 \times 8\times 2</math> linear triangles.
837
|}
838
839
<br/>
840
841
842
{| class="wikitable" style="text-align: center; margin: 1em auto;"
843
|+ Table. 1 Comparison of 1D and 2D solutions for the advection-diffusion-absorption problem of Figure 3  (<math>\gamma _x =10</math>, <math>w=20</math>)
844
|- style="border-top: 2px solid;"
845
| colspan='5' style="border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | '''1D'''
846
| colspan='4' style="border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | '''2D (nodes along line A-A')'''
847
|- style="border-top: 2px solid;"
848
| colspan='5' style="border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Figure 3
849
| colspan='2' style="border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | 4 node quads. (Fig. 6)
850
| colspan='2' style="border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | 3 node triangles (Fig. 7)
851
|- style="border-top: 2px solid;"
852
| style="border-left: 2px solid;border-right: 2px solid;" |  Node 
853
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\bar \phi (\beta =0</math>)
854
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\bar \phi (\beta ^e</math>)
855
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\bar \phi (\beta _c</math>)
856
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\phi </math>(exact)
857
| style="border-left: 2px solid;border-right: 2px solid;" | FIC-1
858
| style="border-left: 2px solid;border-right: 2px solid;" | FIC-2
859
| style="border-left: 2px solid;border-right: 2px solid;" | FIC-1
860
| style="border-left: 2px solid;border-right: 2px solid;" | FIC-2
861
|- style="border-top: 2px solid;"
862
| style="border-left: 2px solid;border-right: 2px solid;" |  1 
863
| style="border-left: 2px solid;border-right: 2px solid;" | 8,00 
864
| style="border-left: 2px solid;border-right: 2px solid;" | 8 
865
| style="border-left: 2px solid;border-right: 2px solid;" | 8 
866
| style="border-left: 2px solid;border-right: 2px solid;" | 8
867
| style="border-left: 2px solid;border-right: 2px solid;" | 8
868
| style="border-left: 2px solid;border-right: 2px solid;" | 8
869
| style="border-left: 2px solid;border-right: 2px solid;" | 8
870
| style="border-left: 2px solid;border-right: 2px solid;" | 8
871
|- style="border-top: 2px solid;"
872
| style="border-left: 2px solid;border-right: 2px solid;" |  2 
873
| style="border-left: 2px solid;border-right: 2px solid;" | 2,94 
874
| style="border-left: 2px solid;border-right: 2px solid;" | 3,06 
875
| style="border-left: 2px solid;border-right: 2px solid;" | 4 
876
| style="border-left: 2px solid;border-right: 2px solid;" | 3,08 
877
| style="border-left: 2px solid;border-right: 2px solid;" | 3,99 
878
| style="border-left: 2px solid;border-right: 2px solid;" | 3,057  
879
| style="border-left: 2px solid;border-right: 2px solid;" | 4,0 
880
| style="border-left: 2px solid;border-right: 2px solid;" | 3,059 
881
|- style="border-top: 2px solid;"
882
| style="border-left: 2px solid;border-right: 2px solid;" |  3 
883
| style="border-left: 2px solid;border-right: 2px solid;" | 1,32 
884
| style="border-left: 2px solid;border-right: 2px solid;" | 1,17 
885
| style="border-left: 2px solid;border-right: 2px solid;" | 2 
886
| style="border-left: 2px solid;border-right: 2px solid;" | 1,19 
887
| style="border-left: 2px solid;border-right: 2px solid;" | 2,00
888
| style="border-left: 2px solid;border-right: 2px solid;" | 1,170 
889
| style="border-left: 2px solid;border-right: 2px solid;" | 2,0 
890
| style="border-left: 2px solid;border-right: 2px solid;" | 1,167
891
|- style="border-top: 2px solid;"
892
| style="border-left: 2px solid;border-right: 2px solid;" |  4 
893
| style="border-left: 2px solid;border-right: 2px solid;" | 1,80 
894
| style="border-left: 2px solid;border-right: 2px solid;" | 0,447 
895
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
896
| style="border-left: 2px solid;border-right: 2px solid;" | 0,457 
897
| style="border-left: 2px solid;border-right: 2px solid;" | 1,00
898
| style="border-left: 2px solid;border-right: 2px solid;" | 0,448 
899
| style="border-left: 2px solid;border-right: 2px solid;" | 1,0 
900
| style="border-left: 2px solid;border-right: 2px solid;" | 0,452
901
|- style="border-top: 2px solid;"
902
| style="border-left: 2px solid;border-right: 2px solid;" |  5 
903
| style="border-left: 2px solid;border-right: 2px solid;" | 0,599 
904
| style="border-left: 2px solid;border-right: 2px solid;" | 0,172 
905
| style="border-left: 2px solid;border-right: 2px solid;" | 0,5 
906
| style="border-left: 2px solid;border-right: 2px solid;" | 0,176 
907
| style="border-left: 2px solid;border-right: 2px solid;" | 0,49 
908
| style="border-left: 2px solid;border-right: 2px solid;" | 0,172
909
| style="border-left: 2px solid;border-right: 2px solid;" | 0,499 
910
| style="border-left: 2px solid;border-right: 2px solid;" | 0,166
911
|- style="border-top: 2px solid;"
912
| style="border-left: 2px solid;border-right: 2px solid;" |  6 
913
| style="border-left: 2px solid;border-right: 2px solid;" | -0,633 
914
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0646 
915
| style="border-left: 2px solid;border-right: 2px solid;" | 0,25 
916
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0677 
917
| style="border-left: 2px solid;border-right: 2px solid;" | 0,248
918
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0648 
919
| style="border-left: 2px solid;border-right: 2px solid;" | 0,2501
920
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0681
921
|- style="border-top: 2px solid;"
922
| style="border-left: 2px solid;border-right: 2px solid;" |  7 
923
| style="border-left: 2px solid;border-right: 2px solid;" | 1,16 
924
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0264 
925
| style="border-left: 2px solid;border-right: 2px solid;" | 0,125 
926
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0261 
927
| style="border-left: 2px solid;border-right: 2px solid;" | 0,125
928
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0255 
929
| style="border-left: 2px solid;border-right: 2px solid;" | 0,1250
930
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0257
931
|- style="border-top: 2px solid;"
932
| style="border-left: 2px solid;border-right: 2px solid;" |  8 
933
| style="border-left: 2px solid;border-right: 2px solid;" | -1,83 
934
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0073
935
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0625
936
| style="border-left: 2px solid;border-right: 2px solid;" | 0,01
937
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0615 
938
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0101 
939
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0624
940
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0072
941
|- style="border-top: 2px solid;border-bottom: 2px solid;"
942
| style="border-left: 2px solid;border-right: 2px solid;" |  9 
943
| style="border-left: 2px solid;border-right: 2px solid;" | 3
944
| style="border-left: 2px solid;border-right: 2px solid;" | 3 
945
| style="border-left: 2px solid;border-right: 2px solid;" | 3 
946
| style="border-left: 2px solid;border-right: 2px solid;" | 3
947
| style="border-left: 2px solid;border-right: 2px solid;" | 3
948
| style="border-left: 2px solid;border-right: 2px solid;" | 3 
949
| style="border-left: 2px solid;border-right: 2px solid;" | 3 
950
| style="border-left: 2px solid;border-right: 2px solid;" | 3
951
952
|}
953
954
Note that, similarly to the 1D case, the FIC-2 results are more accurate (less diffusive) than those obtained in the first iteration (FIC-1). This is due to the more precise evaluation of <math display="inline">\beta _s</math> and <math display="inline">\beta _\eta </math> in Eqs.(37) accounting for the correct sign of all the terms.
955
956
Figures 8&#8211;11 show results for the two 2D problems above described solved now with relatively coarse unstructured meshes of linear triangles and quadrilaterals. The effectiveness and accuracy of the FIC iterative scheme is again noticeable in all cases. Note the agreement of the FIC-2 results of Figures 10 and 11 with the exact solution for the equivalent 1D problem of Figure 3.
957
958
Figure 12 presents the solution of a similar problem where the values of <math display="inline">\phi </math> are prescribed at the four boundaries. The solution domain has now 10 units and the problem is solved first with a mesh of <math display="inline">10\times 10</math> four node square elements. Details of the physical parameters are given in Figure 12. Excellent results are again obtained with the FIC scheme. Similar good results are obtained with a structured mesh of linear triangles (Figure 13) as well as with  non structured meshes of linear quadrilateral and triangles (Figures 14 and 15).
959
960
The effectiveness of the FIC scheme for a diffusive-absorptive problem with Dirichlet boundary conditions is shown in Figure 16. The results shown have been obtained with structured meshes of linear quadrilateral and triangles. Note that the four boundary layers  are well captured in the first step of the iterative solution. Similar good results have also been obtained with unstructured meshes not shown here.
961
962
The final example is a standard benchmark problem of advection-diffusion where sharp layers appear at both the boundary and the interior of the domain. The problem is the advective-diffusive transport of <math display="inline">\phi </math> in a square domain with non uniform Dirichlet conditions, downwards diagonal velocity and zero source terms (i.e. <math display="inline">Q=0</math> and <math display="inline">s=0</math>). Figure 17 displays the SUPG solution and FIC results obtained after two iterations using a structured mesh of <math display="inline">20\times 20</math> linear four node square elements. It is remarkable that the FIC results capture the sharp gradient zones at the boundaries where <math display="inline">\phi </math> is prescribed to zero and at the interior of the domain and elliminate all the spurious oscillations present in the SUPG method.
963
964
Similar good results obtained with the FIC method for a wide range of advective-diffusive problems are presented in <span id='citeF-27'></span>[[#cite-27|27]]. Recent applications of the FIC method to incompressible fluid flow problems are reported in [37].
965
966
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
967
|-
968
|[[Image:draft_Samper_447243531-Figura8a.png|600px|]]
969
|-
970
|[[Image:draft_Samper_447243531-Figura8b.png|600px|Solution of problem of Figure 4 with an unstructured mesh of 209 four node bi-linear quadrilaterals]]
971
|- style="text-align: center; font-size: 75%;"
972
| colspan="1" | Solution of problem of Figure 4 with an unstructured mesh of 209 four node bi-linear quadrilaterals
973
|}
974
975
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
976
|-
977
|[[Image:draft_Samper_447243531-Figura9a.png|600px|]]
978
|-
979
|[[Image:draft_Samper_447243531-Figura9b.png|600px|Solution of problem of Figure 4 with an unstructured mesh of 176 three node linear triangles]]
980
|- style="text-align: center; font-size: 75%;"
981
| colspan="1" | Solution of problem of Figure 4 with an unstructured mesh of 176 three node linear triangles
982
|}
983
984
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
985
|-
986
|[[Image:draft_Samper_447243531-Figura10a.png|600px|]]
987
|-
988
|[[Image:draft_Samper_447243531-Figura10b.png|600px|Solution of problem of Figure 6 with an unstructured mesh of 209 four node bi-linear quadrilaterals]]
989
|- style="text-align: center; font-size: 75%;"
990
| colspan="1" | Solution of problem of Figure 6 with an unstructured mesh of 209 four node bi-linear quadrilaterals
991
|}
992
993
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
994
|-
995
|[[Image:draft_Samper_447243531-Figura11a.png|600px|]]
996
|-
997
|[[Image:draft_Samper_447243531-Figura11b.png|600px|Solution of problem of Figure 6 with an unstructured mesh of 176 three node triangles]]
998
|- style="text-align: center; font-size: 75%;"
999
| colspan="1" | Solution of problem of Figure 6 with an unstructured mesh of 176 three node triangles
1000
|}
1001
1002
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1003
|-
1004
|[[Image:draft_Samper_447243531-Figura12a.png|600px|]]
1005
|-
1006
|[[Image:draft_Samper_447243531-Figura12b.png|600px|2D advection-diffusion-absorption problem over a square domain of size equal to 10 units. ϕ<sup>p</sup>=50 along x=0 and y=10 and ϕ<sup>p</sup>=100 along x=10 and y=0, u= [0,15]<sup>T</sup>, k=1, s=12, w=12, γₓ=0 and γ<sub>y</sub>= 7.5. Galerkin and FIC solutions for a mesh of 10 ×10 four node bi-linear square elements.]]
1007
|- style="text-align: center; font-size: 75%;"
1008
| colspan="1" | 2D advection-diffusion-absorption problem over a square domain of size equal to 10 units. <math>\phi ^p=50</math> along <math>x=0</math> and <math>y=10</math> and <math>\phi ^p=100</math> along <math>x=10</math> and <math>y=0</math>, <math>{u}= [0,15]^T</math>, <math>k=1</math>, <math>s=12</math>, <math>w=12</math>, <math>\gamma _x=0</math> and <math>\gamma _y= 7.5</math>. Galerkin and FIC solutions for a mesh of <math>10 \times 10</math> four node bi-linear square elements.
1009
|}
1010
1011
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1012
|-
1013
|[[Image:draft_Samper_447243531-Figura13a.png|600px|]]
1014
|-
1015
|[[Image:draft_Samper_447243531-Figura13b.png|600px|Solution of the problem of Figure 12 with an unstructured mesh of 432 four node bi-linear quadrilaterals]]
1016
|- style="text-align: center; font-size: 75%;"
1017
| colspan="1" | Solution of the problem of Figure 12 with an unstructured mesh of 432 four node bi-linear quadrilaterals
1018
|}
1019
1020
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1021
|-
1022
|[[Image:draft_Samper_447243531-Figura14a.png|600px|]]
1023
|-
1024
|[[Image:draft_Samper_447243531-Figura14b.png|600px|Solution of problem of Figure 12 with an structured mesh of 10×10×2  three node linear triangles]]
1025
|- style="text-align: center; font-size: 75%;"
1026
| colspan="1" | Solution of problem of Figure 12 with an structured mesh of <math>10\times 10\times 2</math>  three node linear triangles
1027
|}
1028
1029
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1030
|-
1031
|[[Image:draft_Samper_447243531-Figura15a.png|600px|]]
1032
|-
1033
|[[Image:draft_Samper_447243531-Figura15b.png|600px|Solution of problem of Figure 12 with an unstructured mesh of 780 three node triangles]]
1034
|- style="text-align: center; font-size: 75%;"
1035
| colspan="1" | Solution of problem of Figure 12 with an unstructured mesh of 780 three node triangles
1036
|}
1037
1038
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1039
|-
1040
|[[Image:draft_Samper_447243531-Figura16a.png|600px|]]
1041
|-
1042
|[[Image:draft_Samper_447243531-Figura16b.png|600px|Diffusive-absorptive problem over a square domain of size equal to 10 units. ϕ<sup>p</sup>=50 over x=0 and y=10 and ϕ<sup>p</sup>=100 over x=10 and y=0, u= [0,0]<sup>T</sup>, k=1, s=20, w=20, γₓ=0 and γ<sub>y</sub>= 0. Galerkin and FIC solutions obtained with structured  meshes of four node quadrilaterals and linear triangles.]]
1043
|- style="text-align: center; font-size: 75%;"
1044
| colspan="1" | Diffusive-absorptive problem over a square domain of size equal to 10 units. <math>\phi ^p=50</math> over <math>x=0</math> and <math>y=10</math> and <math>\phi ^p=100</math> over <math>x=10</math> and <math>y=0</math>, <math>{u}= [0,0]^T</math>, <math>k=1</math>, <math>s=20</math>, <math>w=20</math>, <math>\gamma _x=0</math> and <math>\gamma _y= 0</math>. Galerkin and FIC solutions obtained with structured  meshes of four node quadrilaterals and linear triangles.
1045
|}
1046
1047
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1048
|-
1049
|[[Image:draft_Samper_447243531-Figura16c.png|600px|]]
1050
|-
1051
|[[Image:draft_Samper_447243531-Figura16d.png|600px|(cont.)]]
1052
|- style="text-align: center; font-size: 75%;"
1053
| colspan="1" | (cont.)
1054
|}
1055
1056
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1057
|-
1058
|[[Image:draft_Samper_447243531-Figure7.png|600px|Square domain with non uniform Dirichlet conditions, downwards diagonal velocity and zero source. SUPG and FIC solutions obtained with a structured mesh of 20×20 linear four node square elements]]
1059
|- style="text-align: center; font-size: 75%;"
1060
| colspan="1" | Square domain with non uniform Dirichlet conditions, downwards diagonal velocity and zero source. SUPG and FIC solutions obtained with a structured mesh of <math>20\times 20</math> linear four node square elements
1061
|}
1062
1063
==8 CONCLUSIONS==
1064
1065
The FIC-FEM formulation presented allows to obtain a stabilized and accurate solution for the advection-diffusion-absorption equation. For the 1D problem the formulation is equivalent to adding a non-linear diffusion term to the standard discretized equations which is  governed by a single stabilization parameter. The use of the constant critical value of the 1D stabilization parameter  provides a stabilized numerical solution in ''a single step''. A more accurate (less diffusive) solution can be obtained using the two step iterative scheme proposed.
1066
1067
The equivalence of the FIC  method with a nonlinear stabilizing diffusion term extends naturally to multidimensional problems using structured and unstructured meshes. The key step is to express the governing equations of the FIC formulation in the principal curvature directions of the solution. The resulting FIC equation is equivalent to adding a nonlinear diffusion matrix to the infinitessimal governing equations. The solution process becomes non linear and a simple iterative algorithm has been presented. The approximation of the main principal curvature direction by that of the gradient vector simplifies the computations in the iterative scheme. Excellent results have been obtained for all the 2D problems solved in just two iterations for structured and nonstructured meshes.
1068
1069
It is remarkable that, similarly to the 1D case, good stabilized results are obtained in the first iteration of the scheme proposed (FIC-1 results) and this may be sufficient for many practical cases. More accurate (less diffusive) results are obtained by performing a  second iteration at a relatively small additional computational cost.
1070
1071
==ACKNOWLEDGEMENTS==
1072
1073
The authors also thank Profs. C. Felippa and S.R. Idelsohn for many useful discussions.
1074
1075
This work has been sponsored by the ''Ministerio de Educación y Ciencia of Spain''.  Plan Nacional, Project numbers: DPI2001-2193, BIA2003-09078-C02-01, and DPI2004-07410-C03-02.
1076
1077
===BIBLIOGRAPHY===
1078
1079
<div id="cite-1"></div>
1080
'''[[#citeF-1|[1]]]'''  Zienkiewicz O.C.  and  Taylor R.L. ''The Finite Element Method''. Volume 3. 5th Edition, Butterworth-Heinemann, 2001.
1081
1082
<div id="cite-2"></div>
1083
'''[[#citeF-2|[2]]]''' Tezduyar T.E. and Park Y.J. Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations. ''Comput. Methods Appl. Mech. Engrg.'', '''59''', 307&#8211;325, 1986.
1084
1085
<div id="cite-3"></div>
1086
'''[3]''' Tezduyar T.E., Park Y.J. and Deans H.A. Finite element procedures for time-dependent convection-diffusion-reaction systems. ''Int. J. Num. Meth. Fluids'', '''7''', 1013&#8211;1033, 1987.
1087
1088
<div id="cite-4"></div>
1089
'''[[#citeF-4|[4]]]'''  Idelsohn S., Nigro N. Storti M. and Buscaglia G. A Petrov-Galerkin formulation for advection-reaction-diffusion problems. ''Comput. Methods Appl. Mech. Engrg.'', '''136''', 27&#8211;46, 1996.
1090
1091
<div id="cite-5"></div>
1092
'''[[#citeF-5|[5]]]'''  Codina R. Comparison of some finite element methods for solving the diffusion-convection-reaction equation. ''Comput. Methods Appl. Mech. Engrg.'', '''156''', 186&#8211;210, 1998.
1093
1094
<div id="cite-6"></div>
1095
'''[6]'''  Codina R. On stabilized finite element methods for linear systems of convection-diffusion-reaction equations. ''Comput. Meth. Appl. Mech. Engrg.'', '''188''', 61&#8211;82, 2000.
1096
1097
<div id="cite-7"></div>
1098
'''[7]'''  Burman E. and Ern A. Nonlinear diffusion and discrete maxium principle for stabilized Galerkin approximations of the convection-diffusion-reaction equation. ''Comput. Meth. Appl. Mech. Engrg.'', '''191''', 3833&#8211;3855, 2002.
1099
1100
<div id="cite-8"></div>
1101
'''[[#citeF-8|[8]]]'''  Harari I. and  Hughes T.J.R. Finite element methods for the Helmholtz equation in an exterior domain: model problems. ''Comput. Meth. Appl. Mech. Engrg.'', '''87''', 59&#8211;96, 1991.
1102
1103
<div id="cite-9"></div>
1104
'''[9]'''   Harari I. and  Hughes T.J.R. Galerkin/least squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains. ''Comput. Meth. Appl. Mech. Engrg.'', '''98''', 411&#8211;454, 1992.
1105
1106
<div id="cite-10"></div>
1107
'''[10]'''   Harari I. and  Hughes T.J.R. Stabilized finite element method for steady advection-diffusion with production. ''Comput. Meth. Appl. Mech. Engrg.'', '''115''', 165&#8211;191, 1994.
1108
1109
<div id="cite-11"></div>
1110
'''[11]'''  Harari I., Grosh K., Hughes T.J.R., Malhotra M.,  Pinsky P.M., Stewart J.R. and  Thompson L.L. Recent development in finite element methods for structural acoustics. ''Archives of Computational Mechanics in Engineering'', '''3, 2-3''', 131&#8211;309, 1996.
1111
1112
<div id="cite-12"></div>
1113
'''[[#citeF-12|[12]]]'''  Hauke G. and Garcia-Olivares A. Variational subgrid scale formulations for the advection-diffusion-reaction equation. ''Comput. Methods Appl. Mech. Engrg.'' 2000; '''190''':6847&#8211;6865.
1114
1115
<div id="cite-13"></div>
1116
'''[13]''' Hauke  G. A simple subgrid scale stabilized method for the advection-diffusion reaction equation. ''Comput. Methods Appl. Mech. Engrg.'' 2002; '''191''':2925&#8211;2947.
1117
1118
<div id="cite-14"></div>
1119
'''[[#citeF-14|[14]]]'''  Brezzi F., Hauke G., Marin L.D. and Sangalli S. Link-cutting bubbles for the stabilization of convection-diffusion-reaction problems. ''Mathematical Models and Methods in Applied Sciences'', World Scientific Publishing Company, 2002.
1120
1121
<div id="cite-15"></div>
1122
'''[[#citeF-15|[15]]]'''  Felippa C.A. and  Oñate E. Nodally exact Ritz discretization of 1D diffusion-absorption and Helmholtz equations by variational FIC and modified equation methods. Research Report No. PI 237, CIMNE, Barcelona 2004. Submitted to ''Comput. Mechanics''.
1123
1124
<div id="cite-16"></div>
1125
'''[16]'''  Idelsohn S.R.,  Heinrich J.C. and Oñate E. Petrov-Galerkin methods for the transient advective-diffusive equation with sharp gradients. ''Int. J. Num. Meth. Engng.'', '''39''', 1455&#8211;1473, 1996.
1126
1127
<div id="cite-17"></div>
1128
'''[17]'''  Harari I. Stability of semidiscrete advection-diffusion in transient computation. Proceedings of ''6th World Congress on Computational Mechanics'', Beijing, Sept. 2004, Z.H. Yao, M.W. Yuan and W.X. Zhong (Eds.), Tsinghua Univ. Press-Springer.
1129
1130
<div id="cite-18"></div>
1131
'''[18]''' Oñate E., Miquel, J. and Hauke, G. Stabilized formulation for the advection-diffusion-reaction equations using finite calculus and linear finite elements. Submittted in ''Comput. Methods Appl. Mech. Engrg.'', March 2005.
1132
1133
<div id="cite-19"></div>
1134
'''[19]''' Oñate E. Derivation of stabilized equations for  advective-diffusive transport and fluid flow problems.  ''Comput. Methods Appl. Mech. Engrg.'', '''151''' (1-2), 233&#8211;267, 1998.
1135
1136
<div id="cite-20"></div>
1137
'''[20]'''  Oñate E. Possibilities of finite calculus in computational mechanics. ''Int. J. Num. Meth. Engng.'', '''60''', 255&#8211;281, 2004.
1138
1139
<div id="cite-21"></div>
1140
'''[21]''' Oñate E., Manzan M. A general procedure for deriving stabilized space-time finite element methods for advective-diffusive problems. ''Int. J. Num. Meth. Fluids'', '''31''', 203&#8211;221, 1999.
1141
1142
<div id="cite-22"></div>
1143
'''[22]'''  Oñate E., Idelsohn S.R., Zienkiewicz O.C. and Taylor R.L. A finite point method in computational mechanics. Applications to convective transport and fluid flow. ''Int. J. Num. Meth. Engng.'', '''39''', 3839&#8211;3866, 1996.
1144
1145
<div id="cite-23"></div>
1146
'''[23]'''  Oñate E. A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. ''Comput. Methods Appl. Mech. Engrg.'', '''182''', (1&#8211;2), 355&#8211;370, 2000.
1147
1148
<div id="cite-24"></div>
1149
'''[24]'''  Oñate E.,  García J. A finite element method for fluid-structure interaction with surface waves using a finite calculus formulation. in ''Comput. Methods Appl. Mech. Engrg.'', '''191''' (6-7), 635-660, 2001.
1150
1151
<div id="cite-25"></div>
1152
'''[25]'''  Idelsohn S.R., Oñate E. and Del Pin F. A Lagrangian meshless finite element method applied to fluid-structure interaction problems. ''Computers and Structures'', '''81''', 655&#8211;671, 2003.
1153
1154
<div id="cite-26"></div>
1155
'''[26]'''   Oñate E., Idelsohn S.R., Del Pin F. and  Aubry R. The particle finite element method. An overview (PFEM). ''Int. J. Comput. Methods'', '''1''' ('''2'''), 267&#8211;307, 2004.
1156
1157
<div id="cite-27"></div>
1158
'''[[#citeF-27|[27]]]'''   Oñate E., García J. and Idelsohn S.R. Ship Hydrodynamics. ''Encyclopedia of Computational Mechanics'', T. Hughes, R. de Borst and E. Stein (Eds.), Vol. 3, Chapter 18, 579&#8211;607, J. Wiley, 2004.
1159
1160
<div id="cite-28"></div>
1161
'''[28]'''  Oñate E., Taylor R.L., Zienkiewicz O.C. and  Rojek J. A residual correction method based on finite calculus. ''Engineering Computations'', '''20''' (5/6), 629&#8211;658, 2003.
1162
1163
<div id="cite-29"></div>
1164
'''[29]''' Oñate E., Rojek J., Taylor R.L. and Zienkiewicz O.C. Finite calculus formulation for analysis of incompressible solids using linear triangles and tetrahedra. ''Int. J. Num. Meth. Engng.'', '''59''' (11), 1473&#8211;1500, 2004.
1165
1166
<div id="cite-30"></div>
1167
'''[30]''' Oñate E., Zárate F. and Idelsohn S.R. Finite element formulation for convection-diffusion problems with sharp gradients using finite calculus. ''Comput. Meth. Appl. Mech. Engng.'' Submitted Nov. 2004.
1168
1169
<div id="cite-31"></div>
1170
'''[31]'''  Hughes T.J.R. and Mallet M. A new finite element formulations for computational fluid dynamics: IV. A discontinuity capturing operator for multidimensional advective-diffusive system. ''Comput. Methods Appl. Mech. Engrg.'', '''58''', 329&#8211;336, 1986b.
1171
1172
<div id="cite-32"></div>
1173
'''[32]'''  Codina R. A discontinuity-capturing crosswind dissipation for the finite element solution of the convection-diffusion equation. ''Comput. Methods Appl. Mech. Engrg.'', '''110''', 325&#8211;342, 1993.
1174
1175
<div id="cite-33"></div>
1176
'''[33]'''  Hughes T.J.R.,  Mallet M. and Mizukami A. A new finite element formulation for comptutational fluid dynamics: II Beyond SUPG. ''Comput. Methods Appl. Mech. Engrg.'', '''54''', 341&#8211;355, 1986.
1177
1178
<div id="cite-34"></div>
1179
'''[34]'''  Galeo A.C. and  Dutra do Carmo E.G. A consistent approximate upwind Petrov-Galerkin method for convection-dominated problems. ''Comput. Methods Appl. Mech. Engrg.'', '''68''', 83&#8211;95, 1988.
1180
1181
<div id="cite-35"></div>
1182
'''[35]'''  Tezduyar T.E. Adaptive determination of the finite element stabilization parameters. ''Proceedings of the ECCOMAS Computational Fluid Dynamics Conference 2001'', Swansea,  Wales, UK, CD-Rom, 2001.
1183
1184
<div id="cite-36"></div>
1185
'''[36]'''  Tezduyar T.E. Computation of moving boundaries and interfaces and stabilization parameters, ''International Journal for Numerical Methods in Fluid'', '''43''', 555-575, 2003.
1186
1187
<div id="cite-37"></div>
1188
'''[37]''' Oñate E., García J., Idelsohn S. and Del Pin F. FIC formulation for finite element analysis of incompressible flows. Eulerian, Lagrangian and ALE approaches. Accepted for publication in ''Computational Methods in Applied Mechanics and Engineering'', 2005.
1189

Return to Onate et al 2004a.

Back to Top