You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
==Ship hydrodynamics==
3
4
'''Eugenio  Oñate¹, Julio García¹ and Sergio R. Idelsohn²'''
5
6
{|
7
|-
8
|(¹)  International Center for Numerical Methods in Engineering (CIMNE)
9
|-
10
| Universitat Politécnica de Catalunya (UPC), Gran Capitán, s/n, 
11
|-
12
| 08034 Barcelona, Spain
13
|-
14
| (²)  CIMNE and International Center for Computational Methods in Engineering (CIMEC)
15
|-
16
| Universidad Nacional del Litoral and CONICET, Santa Fe, Argentina
17
|}
18
-->
19
20
==Abstract==
21
22
This chapter presents an overview of some computational methods for analysis of ship hydrodynamics problems. Attention is focused on the  description of a stabilized finite element formulation derived via a finite calculus procedure. Both arbitrary Lagrangian-Eulerian (ALE) and fully Lagrangian forms are presented. Details of the treatment of the free-surface waves and the interaction between the ship structure and the sea water are also given. Examples of application to a variety of ship hydrodynamics problems are shown.
23
24
'''Keywords''' Ship hydrodynamics, finite element method, finite calculus, fluid-structure interaction
25
26
==1 INTRODUCTION==
27
28
Accurate prediction of the hydrodynamic forces on a ship in motion is of paramount importance in ship design. The water resistance at a certain speed determines the required engine power and thereby the fuel consumption. Minimization of the hydrodynamic forces is therefore an important issue in ship hull design. Further, excitation of a wave pattern by ship motion not only induces wave resistance but may also limit the speed in the vicinity of the shore for environmental reasons, which must also be taken into account in ship design.
29
30
The usual simplification in ship hydrodynamics design is to separately consider the performance of the ship in still water and its behaviour in open sea. Hydrodynamic optimisation of a hull primarily requires the calculation of the resistance in a calm sea and the open sea effects  are generally taken into account as a wave added resistance.
31
32
The resistance of a ship in still water can be considered as the sum of several contributions: a viscous resistance associated with the generation of boundary layers, the wave resistance, the air resistance on the superstructure and the induced resistance related to the generation of lift forces.
33
34
Wave resistance in practical cases amounts to <math display="inline">10</math> to <math display="inline">60%</math> of the total resistance of a ship in still water (Raven, 1996 <span id="citeF-84"></span>[[#cite-84|[84]]]). It increases very rapidly at high speeds dominating the viscous component for high speed ships.  Furthermore, wave resistance is very sensitive to the hull form design and easily affected by small shape modifications. For all these reasons, the  possibility to predict and reduce the wave resistance is an important target.
35
36
The prediction of the wave pattern and the wave resistance of a ship has  challenged mathematicians and hydrodynamicists for over a century. The Boundary Element Method (BEM) is the basis of many computational algorithms developed in  past years. Here the flow problem is solved using a simple potential model.  BEM methods, termed  by  hydrodynamicists as Panel Methods may be classified into two categories. The first one uses the Kelvin wave source as the elementary singularity. The main advantage of such scheme is the automatic satisfaction of the radiation  condition. The theoretical background of this method was reviewed by Wehausen (1970) <span id="citeF-103"></span>[[#cite-103|[103]]], while computational aspects can be found in Soding (1996) <span id="citeF-87"></span>[[#cite-87|[87]]] and Jenson and Soding (1989) <span id="citeF-58"></span>[[#cite-58|[58]]]. The second class of BEM schemes uses the Rankine source as the elementary singularity. This procedure, first presented by Dawson (1977) <span id="citeF-29"></span>[[#cite-29|[29]]], has been widely applied in practice and many improvements have been addressed to account for the nonlinear wave effects. Among these, a succesful example is the Rankine Panel Method (Xia, 1986 <span id="citeF-106"></span>[[#cite-106|[106]]]; Jenson and Soding, 1989 <span id="citeF-58"></span>[[#cite-58|[58]]]; Nakos and Sclavounos, 1990 <span id="citeF-67"></span>[[#cite-67|[67]]]).
37
38
In addition to the important developments in potential flow panel methods for practical ship hydrodynamics analysis during the period 1960-1980, much research in the second half of the twentieth century was oriented towards the introduction of viscosity in the CFD analysis. In the 1960's the viscous flow research was mainly focused in 2D boundary layer theory and by the end of the decade several methods for arbitrary pressure gradients were available. This research continued to solve the 3D case during the following decade and an evaluation of the capability of the new methods to predict ship wave resistance was carried out at different workshops (Bai and McCarthy, 1979 <span id="citeF-7"></span>[[#cite-7|[7]]]; Larsson, 1981 <span id="citeF-61"></span>[[#cite-61|[61]]]; Noblesse and McCarthy, 1983 <span id="citeF-69"></span>[[#cite-69|[69]]]). Here application to some well specified test cases were reported and numerical and experimental results compared acceptable well for most part of the boundary layer along the hull, while wrong results were obtained near the stern. This prompted additional research and by the end of the 1980's a number of numerical procedures for solving the full viscous flow equation accounting for simple turbulence modes based on Reynolds averaged Navier-Stokes (RANS) equations were available. Considerable improvements for predicting the stern flow were reported in subsequent workshops organized in the 1990's (Kim and Lucas, 1990 <span id="citeF-59"></span>[[#cite-59|[59]]]; Reed ''et al.'' , 1990<span id="citeF-85"></span>[[#cite-85|[85]]]; Beck ''et al.'', 1993 <span id="citeF-8"></span>[[#cite-8|[8]]]; Raven, 1996 <span id="citeF-84"></span>[[#cite-84|[84]]]; Soding, 1996 <span id="citeF-87"></span>[[#cite-87|[87]]]; Janson and Larsson, 1996 <span id="citeF-57"></span>[[#cite-57|[57]]]; Alessandrini and Delhommeau, 1996 <span id="citeF-1"></span>[[#cite-1|[1]]]; Miyata, 1996 <span id="citeF-67"></span>[[#cite-67|[67]]], Löhner ''et al.'', 1998 <span id="citeF-64"></span>[[#cite-64|[64]]]). A good review of the status of CFD in ship hydrodynamics in the last part of the 20th century can be found in Larsson ''et al.'' (1998) <span id="citeF-62"></span>[[#cite-62|[62]]].
39
40
Independently of the flow equations used, the free-surface boundary condition has been solved in different manners. The exact free surface condition is nonlinear and several linearizations have been proposed (Baba and Takekuma, 1975 <span id="citeF-6"></span>[[#cite-6|[6]]]; Newmann, 1976 <span id="citeF-68"></span>[[#cite-68|[68]]]; Idelsohn ''et al.'', 1999 <span id="citeF-52"></span>[[#cite-52|[52]]]). Some of them use a fixed domain and others a moving one. An alternative is to solve the full nonlinear free surface equation on a reference surface which does not necessarily coincides with the free surface itself. In this way the updating of the surface mesh is minimized and sometimes is not even necessary.
41
42
The solution of the free-surface equation in a bounded domain brings in the necessity of a radiation condition to eliminate spurious waves. A way to introduce this condition was proposed by Dawson (1977) <span id="citeF-29"></span>[[#cite-29|[29]]] who used a finite difference (FD) formula based in four upwind points to evaluate the first derivatives appearing in the free-surface equation. This method became very popular and this is probably the main reason why a large majority of codes predicting the wave resistance of ships use FD methods on structured meshes (Larsson ''et al.'', 1998 <span id="citeF-62"></span>[[#cite-62|[62]]]).
43
44
Indeed the 1990's were a decade of considerable progress in CFD methods for ship hydrodynamics and the most important breakthrough was perhaps the coupled solution of the free-surface equation with the fluid flow equations. Here a number of viscous and inviscid solutions for the surface ship wave problem using finite element (FE) and finite volume (FV) methods with non structured grids were reported (Farmer ''et al.'', 1993 <span id="citeF-35"></span>[[#cite-35|[35]]], Hino ''et al.'', 1993 <span id="citeF-41"></span>[[#cite-41|[41]]];   Luo ''et al.'', 1995 <span id="citeF-66"></span>[[#cite-66|[66]]]; Storti ''et al.'', 1998a,b <span id="citeF-90"></span>[[#cite-90|[90]]-<span id="citeF-91"></span>[[#cite-91|91]]]; García ''et al.'', 1998 <span id="citeF-36"></span>[[#cite-36|[36]]]; García, 1999 <span id="citeF-37"></span>[[#cite-37|[37]]]; Alessandrini and Delhommeau, 1999 <span id="citeF-2"></span>[[#cite-2|[2]]]; Idelsohn ''et al.'', 1999 <span id="citeF-52"></span>[[#cite-52|[52]]]; Löhner ''et al.'', 1998 <span id="citeF-64"></span>[[#cite-64|[64]]], 1999 <span id="citeF-65"></span>[[#cite-65|[65]]]).
45
46
The current challenges in CFD research for ship hydrodynamics focus in the development of robust (stable) and computationaly efficient numerical methods able to capture the different scales involved in the analysis of practical ship hydrodynamics situations. Wave resistance coefficients for modern ship design are needed for a wide range of speeds and here the accurate prediction of the wave pattern and the hull pressure distribution at low speed (say below Froude number (<math display="inline">Fn = 0,2</math>) ) are still major challenges. Great difficulties also exist in the computation of the viscous resistance which requires very fine grids in the vicinity of the hull, resulting in overall meshes involving (at least) some <math display="inline">10^7-10^9</math> elements. Other relevant problems are the prediction of the wake details and the propeller-hull interaction. Fine meshing and advanced turbulence models are crucial for the realistic solution of these problems. Indeed the use of unstructured meshes is essential for problems involving complex shapes.
47
48
A different class of ship hydrodynamic problems require the modelling of breaking waves or the prediction of water inside the hull (green water) due to large amplitude waves typical of  sea keeping problems. Here Lagrangian flow methods where the motion of each flow particle is individually tracked using techniques developed for (incompressible) solid mechanics are a promising trend for solving a wide class of ship hydrodynamics problems.
49
50
The content of the chapter is structured as follows. In the next section the standard Navier-Stokes equations for an incompressible viscous flow are presented. The equations are formulated in an arbitrary Lagrangian-Eulerian (ALE) description allowing the independent motion of the mesh nodes from that of the fluid particles. Details of the problems posed  by the free-surface wave boundary condition are given. The difficulties encountered in the numerical solution of the fluid flow and the free-surface equations, namely the unstabilities induced by the convective terms and the limits in the approximation introduced by the incompressibility constraint are explained. A new procedure for deriving stabilized numerical methods for this type of problems based on the so called ''finite calculus'' (FIC) formulation is presented. The FIC method is based in redefining the standard governing equations in fluid mechanics by expressing the balance laws in a domain of ''finite size''. This introduces additional terms in the differential equations of the infinitessimal theory which are essential to derive stabilized numerical schemes (Oñate, 1998 <span id="citeF-70"></span>[[#cite-70|[70]]], 2000 <span id="citeF-71"></span>[[#cite-71|[71]]], 2004 <span id="citeF-72"></span>[[#cite-72|[72]]]). We present here a stabilized finite element method using equal-order linear interpolation for the velocity and the pressure variables. Both monolithic and fractional step time integration procedures are  described. A method for solving the coupled fluid-structure interaction problem induced by the motion of the ship due to the hydrodynamic forces is also presented.  A mesh moving algorithm  for updating the position of the free-surface nodes during the ship motion is given.
51
52
In the last part of the chapter the Lagrangian formulation for fluid flow analysis is presented as a particular case of the ALE form. As above mentioned the Lagrangian description has particular advantages for tracking the displacement of  the fluid particles in flows where large motions of the fluid surface occur. One of the advantages of the Lagrangian approach is that the convective terms dissapear in the governing equations of the fluid. In return, the updating of the mesh at almost every time step is now a necessity and efficient mesh generation algorithms must be used (Idelsohn ''et al.'', 2002 <span id="citeF-53"></span>[[#cite-53|[53]]], 2003a,b,c <span id="citeF-54"></span>[[#cite-54|[54]]-<span id="citeF-56"></span>[[#cite-56|56]]]).
53
54
The examples show the efficiency of the ALE and fully Lagrangian formulations to solve a variety of ship hydrodynamics problems.
55
56
==2 THE NAVIER-STOKES EQUATIONS FOR INCOMPRESSIBLE FLOWS. ALE FORMULATION==
57
58
===2.1 Momentum and mass conservation equations===
59
60
The  Navier-Stokes equations for an incompressible fluid in a domain <math display="inline">\Omega </math> can be written in an arbitrary Lagrangian-Eulerian form as
61
62
''Momentum''
63
<span id="eq-1"></span>
64
{| class="formulaSCP" style="width: 100%; text-align: left;" 
65
|-
66
| 
67
{| style="text-align: left; margin:auto;width: 100%;" 
68
|-
69
| style="text-align: center;" | <math>\displaystyle{\rho \left({\partial u_i \over \partial t}+v_j {\partial u_i \over \partial x_j}+ u_i{\partial u_j \over \partial x_j} \right)+ {\partial p \over \partial x_i} - {\partial s_{ij} \over \partial x_j}-b_i =0 } \qquad \hbox{in }\Omega  </math>
70
|}
71
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
72
|}
73
74
''Mass conservation''
75
<span id="eq-2"></span>
76
{| class="formulaSCP" style="width: 100%; text-align: left;" 
77
|-
78
| 
79
{| style="text-align: left; margin:auto;width: 100%;" 
80
|-
81
| style="text-align: center;" | <math>\displaystyle{{\partial u_i \over \partial x_i}=0} \qquad \hbox{in }\Omega  </math>
82
|}
83
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
84
|}
85
86
In Eq.([[#eq-1|1]]) <math display="inline">u_i</math> is the velocity along the ith global reference axis, <math display="inline">u_i^m</math> is the velocity of  the moving mesh nodes, <math display="inline">v_i=u_i-u_i^m</math> is the relative velocity between the fluid and the moving mesh nodes, <math display="inline">\rho </math> is the (constant) density of the fluid, <math display="inline">b_i</math> are body forces, <math display="inline">t</math> is the time, <math display="inline">p</math> is the pressure and <math display="inline">s_{ij}</math> are the viscous stresses related to the viscosity <math display="inline">\mu </math> by the standard expression
87
<span id="eq-3"></span>
88
{| class="formulaSCP" style="width: 100%; text-align: left;" 
89
|-
90
| 
91
{| style="text-align: left; margin:auto;width: 100%;" 
92
|-
93
| style="text-align: center;" | <math>s_{ij}=2\mu \left(\varepsilon _{ij} - {1\over 3}\delta _{ij}{\partial u_k \over \partial x_k}\right) </math>
94
|}
95
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
96
|}
97
98
where <math display="inline">\delta _{ij}</math> is the Kronecker delta and the strain rates <math display="inline">\varepsilon _{ij}</math> are
99
<span id="eq-4"></span>
100
{| class="formulaSCP" style="width: 100%; text-align: left;" 
101
|-
102
| 
103
{| style="text-align: left; margin:auto;width: 100%;" 
104
|-
105
| style="text-align: center;" | <math>\varepsilon _{ij}= {1\over 2}\left({\partial u_i \over \partial x_j}+ {\partial u_j \over \partial x_i}\right) </math>
106
|}
107
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
108
|}
109
110
The volumetric strain rate terms in the Eqs.([[#eq-1|1]]) and ([[#eq-3|3]]) can be neglected following Eq.([[#eq-2|2]]). We will however retain these terms as they are useful for the derivation of the stabilized formulation in Section [[#5 FIC EQUATIONS FOR VISCOUS INCOMPRESSIBLE FLOW. ALE FORMULATION|5]].
111
112
Eqs.([[#eq-1|1]]) and ([[#eq-3|3]]) are completed with the boundary conditions
113
<span id="eq-5a"></span>
114
{| class="formulaSCP" style="width: 100%; text-align: left;" 
115
|-
116
| 
117
{| style="text-align: left; margin:auto;width: 100%;" 
118
|-
119
| style="text-align: center;" | <math>n_j\sigma _{ij}-t_i =0 \quad \hbox{on }\Gamma _t</math>
120
|}
121
| style="width: 5px;text-align: right;white-space: nowrap;" | (5a)
122
|}
123
<span id="eq-5b"></span>
124
{| class="formulaSCP" style="width: 100%; text-align: left;" 
125
|-
126
| 
127
{| style="text-align: left; margin:auto;width: 100%;" 
128
|-
129
| style="text-align: center;" | <math>u_j - u_j^p =0 \quad \hbox{on }\Gamma _u</math>
130
|}
131
| style="width: 5px;text-align: right;white-space: nowrap;" | (5b)
132
|}
133
134
where <math display="inline">\sigma _{ij}=s_{ij}- p\delta _{ij}</math> are the total stresses, <math display="inline">n_j</math> are the component of the unit normal vector to the boundary and <math display="inline">t_i</math> and <math display="inline">u_j^p</math> are prescribed tractions and velocities on the Neumann and Dirichlet boundaries <math display="inline">\Gamma _t</math> and <math display="inline">\Gamma _u</math>, respectively where <math display="inline">\Gamma = \Gamma _t \cup \Gamma _u</math> is the boundary of the analysis domain <math display="inline">\Omega </math>. The boundary conditions are completed with the initial condition <math display="inline">u_j =u_j^0</math> for <math display="inline">t=t_0</math>.
135
136
In above equations <math display="inline">i,j=1,n_d</math> where <math display="inline">n_d</math> is the number of space dimension (i.e. <math display="inline">n_d =3</math> for 3D). Also, throughout the text the summation convention for repeated indexes is assumed unless specified otherwise.
137
138
===2.2 Free-surface boundary conditions===
139
140
The boundary conditions ([[#eq-5a|5a]]) on the surface tractions can be written in local normal and tangential axes as
141
<span id="eq-6"></span>
142
{| class="formulaSCP" style="width: 100%; text-align: left;" 
143
|-
144
| 
145
{| style="text-align: left; margin:auto;width: 100%;" 
146
|-
147
| style="text-align: center;" | <math>\begin{array}{l}\sigma _n -t_n = 0\\ \sigma _{t_j}- t_{g_j}=0  \qquad j=1,2 \quad \hbox{for 3D} \end{array} </math>
148
|}
149
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
150
|}
151
152
where <math display="inline">\sigma _n</math> and <math display="inline">\sigma _{t_j}</math> are the normal and tangential stresses, respectively and <math display="inline">t_n</math> and <math display="inline">t_{g_j}</math> are the prescribed normal and tangential tractions, respectively.
153
154
On the free boundary we have to ensure at all times that: 1) the pressure (which approximates the normal stres) equals the atmospheric pressure and the tangential tractions are zero unless specified otherwise, and 2) material particles of the fluid belong to the free-surface.
155
156
The condition on the pressure is simply especified as
157
<span id="eq-7"></span>
158
{| class="formulaSCP" style="width: 100%; text-align: left;" 
159
|-
160
| 
161
{| style="text-align: left; margin:auto;width: 100%;" 
162
|-
163
| style="text-align: center;" | <math>p=p_a </math>
164
|}
165
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
166
|}
167
168
where <math display="inline">p_a</math> is the atmospheric pressure (usually given a zero value).
169
170
The condition on the tangential tractions is satisfied by setting <math display="inline">t_{g_i} = 0</math> in Eq.([[#eq-6|6]]). This is automatically accounted for by the ''natural boundary conditions'' in the weak form of the momentum equations (Zienkiewicz and Taylor Vol. 3, 2000 <span id="citeF-107"></span>[[#cite-107|[107]]]).
171
172
The condition on the material particles is expressed (for steady state conditions) as
173
<span id="eq-8"></span>
174
{| class="formulaSCP" style="width: 100%; text-align: left;" 
175
|-
176
| 
177
{| style="text-align: left; margin:auto;width: 100%;" 
178
|-
179
| style="text-align: center;" | <math>u_in_i =0 \qquad \hbox{or } \qquad {\boldsymbol u}^T {\boldsymbol n}=0 </math>
180
|}
181
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
182
|}
183
184
i.e. the velocity vector is tangent to the free-surface. An alternative form of Eq.([[#eq-8|8]]) can be found by noting that the normal vector has the following components
185
<span id="eq-9"></span>
186
{| class="formulaSCP" style="width: 100%; text-align: left;" 
187
|-
188
| 
189
{| style="text-align: left; margin:auto;width: 100%;" 
190
|-
191
| style="text-align: center;" | <math>{\boldsymbol n}=\left[-{\partial \beta  \over \partial x_1},1\right]^T\qquad \hbox{for 2D }\quad  \hbox{ and }\quad {\boldsymbol n}=\left[-{\partial \beta  \over \partial x_1}, -{\partial \beta  \over \partial x_2},1\right]^T \qquad \hbox{for 3D}  </math>
192
|}
193
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
194
|}
195
196
In Eq.([[#eq-9|9]]) <math display="inline">\beta = x_3 - x_3^{ref}</math> is the free-surface elevation measured in the direction of the vertical coordinate <math display="inline">x_3</math> relative to some previously known surface, which we shall refer to as the ''reference surface'' (Figure [[#img-2|2]]). This surface may  be horizontal (i.e. the undisturbed water surface) or may be simply a previously computed surface.
197
198
Introducing Eq.([[#eq-9|9]]) into ([[#eq-8|8]]) gives (for 3D)
199
<span id="eq-10"></span>
200
{| class="formulaSCP" style="width: 100%; text-align: left;" 
201
|-
202
| 
203
{| style="text-align: left; margin:auto;width: 100%;" 
204
|-
205
| style="text-align: center;" | <math>u_i {\partial \beta  \over \partial x_i}-u_3 =0 \quad , \quad i=1,2 </math>
206
|}
207
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
208
|}
209
210
Eq.([[#eq-10|10]]) is generalized for the transient 3D case as
211
<span id="eq-11"></span>
212
{| class="formulaSCP" style="width: 100%; text-align: left;" 
213
|-
214
| 
215
{| style="text-align: left; margin:auto;width: 100%;" 
216
|-
217
| style="text-align: center;" | <math>\displaystyle{{\partial \beta  \over \partial t}+u_i {\partial \beta  \over \partial x_i}-u_3 =0}\quad , \quad i=1,2 </math>
218
|}
219
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
220
|}<br/>
221
222
We observe that <math display="inline">\beta </math> obeys ''a pure convection'' equation with <math display="inline">u_3</math> playing the role of a (non linear) source term. The solution of Eq.([[#eq-11|11]]) with standard Galerkin FEM, or centred FD or FV methods will therefore suffer from numerical instabilities and some kind of stabilization is needed in order to obtain a physically meaningful solution. A  method to solve Eq.([[#eq-11|11]]), very popular in the context of the potential flow formulation, was introduced by Dawson (1977) <span id="citeF-29"></span>[[#cite-29|[29]]] using a four point FD upwind operator to evaluate the first derivatives of <math display="inline">\beta </math> on regular grids. Dawson's method has been extended by different authors to solve a many ship hydrodynamics problems (Raven, 1996 <span id="citeF-84"></span>[[#cite-84|[84]]]; Larsson ''et al.'', 1998 <span id="citeF-62"></span>[[#cite-62|[62]]]; Idelsohn ''et al.'', 1999 <span id="citeF-52"></span>[[#cite-52|[52]]]).
223
224
Solution of Eq.([[#eq-11|11]]) is strongly coupled with that of the fluid flow equations. The solution of the whole problem is highly non linear due to the pressence of the unknown velocities in Eq.([[#eq-11|11]]) and also to the fact that the free-surface position defining the new boundary conditions is also unknown. A number of iterative schemes have been developed for the solution of the non linear surface wave problem (Idelsohn ''et al.'', 1999 <span id="citeF-52"></span>[[#cite-52|[52]]]). They all basically involve solving Eq.([[#eq-11|11]]) for the new free-surface height <math display="inline">\beta </math>, for fixed values of the velocity field computed from the fluid solver in a previous iteration within each time increment. At this stage two procedures are possible, either the position of the free-surface is updated after each iteration and this becomes the new reference surface, or else an equivalent pressure of value <math display="inline">p=p_a + g (\beta -  \beta _{ref})</math>, where <math display="inline">g</math> is the gravity constant, is applied at the current reference surface as a boundary condition in the next flow iteration. The first option might require the regeneration of a new mesh, whereas the second one is less accurate but computationaly cheaper. Hence a compromise between the two alternatives is usually chosen in practice. The iterative process continues until a converged solution is found for the velocity, the pressure and the free-surface height at each time step. Details of the computational process are described in a next section.
225
226
An alternative method to treat the free-surface equation is based in the volume of fluid (VOF) technique (Hirt and Nichols, 1981 <span id="citeF-43"></span>[[#cite-43|[43]]]). In the VOF method the free-surface position is defined as the interface between two fluids interacting with each other, where the efect of one fluid on the other is very small (i.e. the water and the surrounding air). An interface function which takes the values 0 and 1 for each of the two fluids is transported with the fluid velocity using a time dependent advection equation. Early applications of the VOF in the context of the stabilized FEM were reported by Codina ''et al.'', 1994 <span id="citeF-26"></span>[[#cite-26|[26]]] and Tezduyar ''et al.'', 1998 <span id="citeF-102"></span>[[#cite-102|[102]]].  Examples of application of the VOF to ship hydrodynamics problems can be found in Tajima and Yabe, 1999 <span id="citeF-93"></span>[[#cite-93|[93]]] and Azcueta ''et al.'', 1999 <span id="citeF-5"></span>[[#cite-5|[5]]].
227
228
==3 ABOUT THE FINITE ELEMENT SOLUTION OF THE NAVIER-STOKES EQUATIONS==
229
230
The development of efficient and robust numerical methods for incompressible flow problems has been a subject of intensive research in last decades. Much effort has been spent in developing the so called ''stabilized'' numerical methods overcoming the two main sources of instability in incompressible flow analysis, namely those originated by the high values of the convective terms  and those induced by the difficulty in satisfying the incompressibility constraint.
231
232
The solution of above problems in the context of the finite element method (FEM) has been attempted in a number of ways. The underdiffusive character of the Galerkin FEM for high convection flows (which incidentaly also occurs for centred FD and FV methods) has been corrected by adding some kind of artificial viscosity terms to the standard Galerkin equations. A good review of such approach can be found in  Zienkiewicz and Taylor, Vol. 3 2000 <span id="citeF-107"></span>[[#cite-107|[107]]] and Donea and Huerta, 2003 <span id="citeF-31"></span>[[#cite-31|[31]]].
233
234
A popular way to overcome the problems with the incompressibility constraint is by introducing a pseudo-compressibility in the flow and using implicit and explicit algorithms developed for this kind of problems, such as artificial compressibility schemes (Chorin, 1967A <span id="citeF-14"></span>[[#cite-14|[14]]] popular way to overcome the problems with the incompressibility constraint is by introducing a pseudo-compressibility in the flow and using implicit and explicit algorithms developed for this kind of problems, such as artificial compressibility schemes (Chorin, 1967 <span id="citeF-14"></span>[[#cite-14|[14]]]; Farmer ''et al.'', 1993 <span id="citeF-35"></span>[[#cite-35|[35]]]; Peraire ''et al.'', 1994 <span id="citeF-82"></span>[[#cite-82|[82]]]; Briley ''et al.'', 1995 <span id="citeF-10"></span>[[#cite-10|[10]]]; Sheng ''et al.'', 1996 <span id="citeF-86"></span>[[#cite-86|[86]]])  and preconditioning techniques (Idelsohn ''et al.'', 1995 <span id="citeF-51"></span>[[#cite-51|[51]]]). Other FEM schemes with good stabilization properties for the convective and incompressibility terms  are based in Petrov-Galerkin (PG) techniques. The background of PG methods are the non-centred (upwind) schemes for computing the first derivatives of the convective operator in FD and FV methods. More recently a general class of Galerkin FEM has been developed where the standard Galerkin variational form is extended with adequate residual-based terms in order to achieve a stabilized numerical scheme (Codina, 1998 <span id="citeF-16"></span>[[#cite-16|[16]]], 2000 <span id="citeF-17"></span>[[#cite-17|[17]]]). Among the many FEM of this kind  we can name the Streamline Upwind Petrov Galerkin (SUPG) method (Hughes and Brooks, 1979 <span id="citeF-45"></span>[[#cite-45|[45]]]; Brooks and Hughes, 1982 <span id="citeF-11"></span>[[#cite-11|[11]]]; Tezduyar and Hughes, 1983 <span id="citeF-97"></span>[[#cite-97|[97]]]; Hughes and Tezduyar, 1984 <span id="citeF-46"></span>[[#cite-46|[46]]]; Hughes and Mallet, 1986 <span id="citeF-48"></span>[[#cite-48|[48]]]; Idelsohn ''et al.'', 1995 <span id="citeF-51"></span>[[#cite-51|[51]]]; Storti ''et al.'', 1995 <span id="citeF-88"></span>[[#cite-88|[88]]], 1997 <span id="citeF-89"></span>[[#cite-89|[89]]]; Cruchaga and Oñate, 1997 <span id="citeF-27"></span>[[#cite-27|[27]]], 1999 <span id="citeF-28"></span>[[#cite-28|[28]]]), the Galerkin Least Square (GLS) method (Hughes ''et al.'', 1989 <span id="citeF-50"></span>[[#cite-50|[50]]]; Tezduyar, 1991 <span id="citeF-94"></span>[[#cite-94|[94]]]; Tezduyar ''et al.'', 1992a <span id="citeF-99"></span>[[#cite-99|[99]]]), the Taylor-Galerkin method (Donea, 1984 <span id="citeF-30"></span>[[#cite-30|[30]]]), the Characteristic Galerkin method (Douglas and Russell, 1982 <span id="citeF-32"></span>[[#cite-32|[32]]]; Pironneau, 1982 <span id="citeF-83"></span>[[#cite-83|[83]]]; Löhner ''et al.'', 1984 <span id="citeF-63"></span>[[#cite-63|[63]]]) and its variant the characteristic Based Split (CBS) method (Zienkiewicz and Codina, 1995 <span id="citeF-108"></span>[[#cite-108|[108]]]; Codina ''et al.'', 1998 <span id="citeF-23"></span>[[#cite-23|[23]]]; Codina and Zienkiewicz, 2002 <span id="citeF-25"></span>[[#cite-25|[25]]]), pressure gradient operator methods (Codina and Blasco, 1997 <span id="citeF-22"></span>[[#cite-22|[22]]], 2000 <span id="citeF-24"></span>[[#cite-24|[24]]])  and the Subgrid Scale (SGS) method (Hughes, 1995 <span id="citeF-44"></span>[[#cite-44|[44]]]; Brezzi ''et al.'', 1997 <span id="citeF-9"></span>[[#cite-9|[9]]]; Codina, 2000 <span id="citeF-17"></span>[[#cite-17|[17]]], 2002 <span id="citeF-21"></span>[[#cite-21|[21]]]).
235
236
In this work a stabilized FEM for incompressible flows is derived taking as the starting point the modified governing equations of the flow problem formulated via a finite calculus (FIC) approach. The FIC method is based in invoking the balance of fluxes in a domain of finite size. This introduces naturally additional terms in the classical differential equations of infinitessimal fluid mechanics which are a function of the balance domain dimensions. The new terms in the modified governing equations provide naturally the necessary stabilization to the standard Galerkin finite element method.
237
238
In the next section, the main concepts of the FIC approch are introduced via a simple 1D convection-diffusion model problem. Then the  FIC formulation of the fluid flow equations and the free-surface  wave equations using the finite element method  are presented.
239
240
==4 BASIC CONCEPTS OF THE FINITE CALCULUS (FIC) METHOD==
241
242
We will consider a convection-diffusion problem in a 1D domain <math display="inline">\Omega </math> of length <math display="inline">L</math>. The equation of balance of fluxes in a subdomain of size <math display="inline">d</math> belonging to <math display="inline">\Omega </math> (Figure [[#img-1|1]]) is written as
243
<span id="eq-12"></span>
244
{| class="formulaSCP" style="width: 100%; text-align: left;" 
245
|-
246
| 
247
{| style="text-align: left; margin:auto;width: 100%;" 
248
|-
249
| style="text-align: center;" | <math>q_A - q_B=0 </math>
250
|}
251
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
252
|}
253
254
where <math display="inline">q_A</math> and <math display="inline">q_B</math> are the incoming and outgoing fluxes at points <math display="inline">A</math> and <math display="inline">B</math>, respectively. The flux <math display="inline">q</math> includes both convective and diffusive terms; i.e. <math display="inline">q=u\phi - k{d\phi \over dx}</math>, where <math display="inline">\phi </math> is the transported variable, <math display="inline">u</math> is the velocity and <math display="inline">k</math> is the diffusitivity of the material.
255
256
We express now the fluxes <math display="inline">q_A</math> and <math display="inline">q_B</math> in terms of the flux at an arbitrary point <math display="inline">C</math> within the balance domain (Figure  [[#img-1|1]]). Expanding <math display="inline">q_A</math> and <math display="inline">q_B</math> in Taylor series around point <math display="inline">C</math> up to second order terms gives
257
<span id="eq-13"></span>
258
{| class="formulaSCP" style="width: 100%; text-align: left;" 
259
|-
260
| 
261
{| style="text-align: left; margin:auto;width: 100%;" 
262
|-
263
| style="text-align: center;" | <math>q_A= q_C - d_1 \frac{dq}{d x}\vert _C+ \frac{d^2_1}{2}\frac{d^2q}{dx^2}\vert _C + O(d^3_1)\quad ,\quad  q_B= q_C + d_2 \frac{dq}{d x}\vert _C+\frac{d^2_2}{2}\frac{d^2q}{dx^2}\vert _C + O(d^3_2) </math>
264
|}
265
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
266
|}
267
268
Substituting Eq.([[#eq-13|13]]) into Eq.([[#eq-12|12]]) gives after simplification
269
<span id="eq-14"></span>
270
{| class="formulaSCP" style="width: 100%; text-align: left;" 
271
|-
272
| 
273
{| style="text-align: left; margin:auto;width: 100%;" 
274
|-
275
| style="text-align: center;" | <math>\frac{dq}{dx}-\underline{\frac{h}{2} \frac{d^2q}{dx^2}}=0 </math>
276
|}
277
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
278
|}
279
280
where <math display="inline">h=d_1-d_2</math> and all derivatives are computed at point <math display="inline">C</math>.
281
282
Standard calculus theory assumes  that the domain <math display="inline">d</math> is of infinitessimal size and the resulting balance equation is simply <math display="inline">{dq\over dx}=0</math>. We will relax this assumption and allow the balance domain to have a ''finite size''. The new balance equation ([[#eq-14|14]]) incorporates now the underlined term which introduces the ''characteristic length'' <math display="inline">h</math>. Obviously, accounting for higher order terms in Eq.([[#eq-13|13]]) would lead to new terms in Eq.([[#eq-14|14]]) involving higher powers of <math display="inline">h</math>.
283
284
Distance <math display="inline">h</math> in Eq.([[#eq-14|14]]) can be interpreted as a free parameter depending on the location of point <math display="inline">C</math> (note that <math display="inline">h=0</math> for <math display="inline">d_1=d_2</math>). However, the fact that Eq.([[#eq-14|14]]) is the exact balance equation (up to second order terms) for any 1D domain of finite size and that the position of point <math display="inline">C</math> is arbitrary, can be used to derive numerical schemes with enhanced properties, simply by computing the characteristic length parameter using an adequate “optimality” rule.
285
286
Consider, for instance, the modified equation ([[#eq-14|14]]) applied to the convection-diffusion problem. Neglecting third order derivatives of <math display="inline">\phi </math>, Eq.([[#eq-14|14]]) can be written as
287
<span id="eq-15"></span>
288
{| class="formulaSCP" style="width: 100%; text-align: left;" 
289
|-
290
| 
291
{| style="text-align: left; margin:auto;width: 100%;" 
292
|-
293
| style="text-align: center;" | <math>-u \frac{d\phi }{dx}+\left(k+\frac{u h}{2}\right)\frac{d^2\phi }{dx^2}=0 </math>
294
|}
295
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
296
|}
297
298
We see that the FIC procedure introduces ''naturally'' an additional diffusion term into the standard convection-diffusion equation. This is the basis of the popular “artificial diffusion” method (Hirsch, 1988, 1990 <span id="citeF-42"></span>[[#cite-42|[42]]]). The characteristic length <math display="inline">h</math> is typically expressed as a function of the cell or element dimensions. The optimal or critical value of <math display="inline">h</math> can be computed from numerical stability conditions such as obtaining a physically meaningful solution, or even obtaining “exact” nodal values (Zienkiewicz and Taylor, 2000 <span id="citeF-107"></span>[[#cite-107|[107]]]; Oñate and Manzan, 1999 <span id="citeF-76"></span>[[#cite-76|[76]]], 2000 <span id="citeF-77"></span>[[#cite-77|[77]]]; Oñate, 2004 <span id="citeF-72"></span>[[#cite-72|[72]]]).
299
300
Equation ([[#eq-13|13]]) can be extended to account for source and time effects. The full FIC equation for the transient convection-diffusion problem can be written in compact form as
301
<span id="eq-16"></span>
302
{| class="formulaSCP" style="width: 100%; text-align: left;" 
303
|-
304
| 
305
{| style="text-align: left; margin:auto;width: 100%;" 
306
|-
307
| style="text-align: center;" | <math>r- \underline{\frac{h}{2} \frac{dr}{dx}}- \underline{{\delta \over 2} {\partial r \over \partial t}}=0 </math>
308
|}
309
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
310
|}
311
<span id="eq-17"></span>
312
{| class="formulaSCP" style="width: 100%; text-align: left;" 
313
|-
314
| 
315
{| style="text-align: left; margin:auto;width: 100%;" 
316
|-
317
| style="text-align: center;" | <math>r = -\left(\frac{d\phi }{dt}+u \frac{d\phi }{dx}\right)+ \frac{d}{dx}\left(k \frac{d\phi }{dx}\right)+ Q </math>
318
|}
319
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
320
|}
321
322
where <math>Q</math> is the external source and <math>\delta </math> is a time stabilization parameter (Oñate, 1998 <span id="citeF-70"></span>[[#cite-70|[70]]]; Oñate and Manzan, 1999 <span id="citeF-76"></span>[[#cite-76|[76]]]). For consistency a FIC form of the Neumann boundary condition should be used. This is obtained by invoking balance of fluxes in a domain of finite size next to the boundary <math>\Gamma _q</math> where the flux is prescribed to a value <math>\bar q</math>. The modified FIC boundary condition is
323
<span id="eq-18"></span>
324
{| class="formulaSCP" style="width: 100%; text-align: left;" 
325
|-
326
| 
327
{| style="text-align: left; margin:auto;width: 100%;" 
328
|-
329
| style="text-align: center;" | <math>k \frac{d\phi }{dx}+\bar q- \underline{\frac{h}{2}r}=0 \quad \hbox{at } \Gamma _q </math>
330
|}
331
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
332
|}
333
334
The definition of the problem is completed with the standard Dirichlet condition prescribing the value of <math display="inline">\phi </math> at the boundary <math display="inline">\Gamma _\phi </math> and the initial conditions.
335
336
==5 FIC EQUATIONS FOR VISCOUS INCOMPRESSIBLE FLOW. ALE FORMULATION==
337
338
The starting point are the FIC equations for a viscous incompressible fluid. For simplicity we will neglect the time stabilization term, as this is not relevant for the purposes of this work. The equations are written as (Oñate, 1998 <span id="citeF-70"></span>[[#cite-70|[70]]], 2000 <span id="citeF-71"></span>[[#cite-71|[71]]]; Oñate ''et al.'', 2002 <span id="citeF-79"></span>[[#cite-79|[79]]])
339
340
''Momentum''
341
<span id="eq-19"></span>
342
{| class="formulaSCP" style="width: 100%; text-align: left;" 
343
|-
344
| 
345
{| style="text-align: left; margin:auto;width: 100%;" 
346
|-
347
| style="text-align: center;" | <math>r_{m_i} - \underline{{1\over 2} h_j{\partial r_{m_i} \over \partial x_j}}=0  </math>
348
|}
349
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
350
|}
351
352
''Mass balance''
353
<span id="eq-20"></span>
354
{| class="formulaSCP" style="width: 100%; text-align: left;" 
355
|-
356
| 
357
{| style="text-align: left; margin:auto;width: 100%;" 
358
|-
359
| style="text-align: center;" | <math>\left({\partial u_k \over \partial x_k}\right)- \underline{{h_j\over 2} {\partial  \over \partial x_j} \left({\partial u_k \over \partial x_k}\right)}=0  </math>
360
|}
361
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
362
|}
363
364
where
365
<span id="eq-21"></span>
366
{| class="formulaSCP" style="width: 100%; text-align: left;" 
367
|-
368
| 
369
{| style="text-align: left; margin:auto;width: 100%;" 
370
|-
371
| style="text-align: center;" | <math>r_{m_i} = \rho \left({\partial u_i \over \partial t}+v_j{\partial u_i \over \partial x_j}+u_i {\partial u_j \over \partial x_j}\right)+ {\partial p \over \partial x_i}- {\partial s_{ij} \over \partial x_j}-b_i \qquad i,j = 1, n_d </math>
372
|}
373
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
374
|}
375
376
and all the terms have been defined in Section [[#2.1 Momentum and mass conservation equations|2.1.]]
377
378
The Neumann boundary conditions for the FIC formulation are (Oñate, 1998 <span id="citeF-70"></span>[[#cite-70|[70]]], 2000 <span id="citeF-71"></span>[[#cite-71|[71]]])
379
<span id="eq-22"></span>
380
{| class="formulaSCP" style="width: 100%; text-align: left;" 
381
|-
382
| 
383
{| style="text-align: left; margin:auto;width: 100%;" 
384
|-
385
| style="text-align: center;" | <math>n_j \sigma _{ij} -t_i + \underline{{1\over 2} h_j n_j r_{m_i}}=0 \quad \hbox{on }\Gamma _t </math>
386
|}
387
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
388
|}
389
390
The Dirichlet and initial boundary conditions are the standard ones given in Section [[#2.1 Momentum and mass conservation equations|2.1.]]
391
392
The <math display="inline">h_i's</math> in above equations are characteristic lengths of the domain where balance of momentum and mass is enforced. In Eq.([[#eq-22|22]]) these lengths define the domain where equilibrium of boundary tractions is established. The sign in front the <math display="inline">h_i</math> term in Eq.([[#eq-22|22]]) is consistent with the definition of <math display="inline">r_{m_i}</math> in Eq.([[#eq-21|21]]).
393
394
Eqs.([[#eq-19|19]])-([[#eq-22|22]]) are the starting  point for deriving stabilized FEM for solving the incompressible Navier-Stokes equations using equal-order interpolation for all variables.
395
396
===5.1 Stabilized integral forms===
397
398
From Eqs.([[#eq-19|19]]) and ([[#eq-3|3]]) it can be obtained
399
<span id="eq-23"></span>
400
{| class="formulaSCP" style="width: 100%; text-align: left;" 
401
|-
402
| 
403
{| style="text-align: left; margin:auto;width: 100%;" 
404
|-
405
| style="text-align: center;" | <math>{h_j\over 2} {\partial  \over \partial x_j} \left({\partial u_k \over \partial x_k}\right)\simeq   \sum \limits _{i=1}^{n_d}\tau _i     {\partial r_{m_i} \over \partial x_i} </math>
406
|}
407
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
408
|}
409
410
where
411
<span id="eq-24"></span>
412
{| class="formulaSCP" style="width: 100%; text-align: left;" 
413
|-
414
| 
415
{| style="text-align: left; margin:auto;width: 100%;" 
416
|-
417
| style="text-align: center;" | <math>\tau _i = \left({8\mu \over 3h_i^2}+{2\rho u_i\over h_i}\right)^{-1} </math>
418
|}
419
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
420
|}
421
422
Substituting Eq.([[#eq-23|23]]) into Eq.([[#eq-20|20]]) leads to the following stabilized mass balance equation
423
<span id="eq-25></span>
424
{| class="formulaSCP" style="width: 100%; text-align: left;" 
425
|-
426
| 
427
{| style="text-align: left; margin:auto;width: 100%;" 
428
|-
429
| style="text-align: center;" | <math>{\partial u_k \over \partial x_k}- \sum \limits _{i=1}^{n_d} \tau _i {\partial r_{m_i} \over \partial x_i}=0 </math>
430
|}
431
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
432
|}
433
434
The <math display="inline">\tau _i</math>'s in Eq.([[#eq-23|23]]) are ''intrinsic time parameters per unit mass''. Similar parameters  also appear in other stabilized formulations (Hughes and Mallet, 1986a <span id="citeF-48"></span>[[#cite-48|[48]]]; Tezduyar, 1991 <span id="citeF-94"></span>[[#cite-94|[94]]], 2001 <span id="citeF-95"></span>[[#cite-95|[95]]]; Codina, 2002 <span id="citeF-21"></span>[[#cite-21|[21]]]). Note that  the parameters of Eq.([[#eq-24|24]]) emerge naturally form the FIC formation and take the values of <math display="inline">\tau _i =\displaystyle{3h_i^2\over 8\mu }</math> and <math display="inline">\tau _i =\displaystyle{h_i\over 2\rho u_i}</math> for the viscous limit (Stokes flow) and the inviscid  limit (Euler flow), respectively.
435
436
The weighted residual form of the governing equations (Eqs.([[#eq-19|19]]), ([[#eq-22|22]]) and ([[#eq-25|25]])) is
437
<span id="eq-26"></span>
438
{| class="formulaSCP" style="width: 100%; text-align: left;" 
439
|-
440
| 
441
{| style="text-align: left; margin:auto;width: 100%;" 
442
|-
443
| style="text-align: center;" | <math>\int _\Omega \delta u_i \left[r_{m_i} - {h_j\over 2} {\partial r_{m_i} \over \partial x_j}\right]+ \int _{\Gamma _t} \delta u_i (\sigma _{ij} n_j - t_i +{ h_j\over 2} n_j r_{m_i}) d\Gamma =0 </math>
444
|}
445
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
446
|}
447
<span id="eq-27"></span>
448
{| class="formulaSCP" style="width: 100%; text-align: left;" 
449
|-
450
| 
451
{| style="text-align: left; margin:auto;width: 100%;" 
452
|-
453
| style="text-align: center;" | <math>\int _\Omega q \left[{\partial u_k \over \partial x_k}- \sum \limits _{i=1}^{n_d} \tau _i {\partial r_{m_i} \over \partial x_i}\right]d\Omega =0 </math>
454
|}
455
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
456
|}
457
458
where <math display="inline">\delta u_i</math> and <math display="inline">q</math> are arbitrary weighting functions representing virtual velocity and virtual pressure fields, respectively. Integrating by parts above equations leads to
459
<span id="eq-28"></span>
460
{| class="formulaSCP" style="width: 100%; text-align: left;" 
461
|-
462
| 
463
{| style="text-align: left; margin:auto;width: 100%;" 
464
|-
465
| style="text-align: center;" | <math>\int _\Omega \left[\delta u_i\rho \left({\partial u_i \over \partial t}+v_j {\partial {u_i} \over \partial x_j}\right)+ \delta \varepsilon _{ij}(\tau _{ij}- \delta _{ij}p)\right]d\Omega -  \int _{\Omega } \delta u_i b_i d\Omega -\int _{\Gamma _t} \delta u_i t_id\Omega + </math>
466
|-
467
| style="text-align: center;" | <math> + \sum \limits _e \int _{\Omega ^e} {h_j\over 2}{\partial \delta u_i \over \partial x_j} r_{m_i} d\Omega =0 </math>
468
|}
469
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
470
|}
471
<span id="eq-29"></span>
472
{| class="formulaSCP" style="width: 100%; text-align: left;" 
473
|-
474
| 
475
{| style="text-align: left; margin:auto;width: 100%;" 
476
|-
477
| style="text-align: center;" | <math>\int _\Omega q r_d \,d\Omega + \int _\Omega \left[\sum \limits _{i=1}^{n_d} \tau _i {\partial q \over \partial x_i} r_{m_i}\right]d\Omega =0 </math>
478
|}
479
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
480
|}
481
482
The fourth integral in Eq.([[#eq-28|28]]) is computed as a sum of the element contributions to allow for discontinuities in the derivatives of <math display="inline">r_{m_i}</math> along the element interfaces. As usual <math display="inline">\delta \varepsilon _{ij} ={1\over 2} \left({\partial \delta u_i \over \partial x_j}+{\partial \delta u_j \over \partial x_i}\right)</math>. In Eq.([[#eq-28|28]]) we have neglected the volumetric strain rate term, whereas in the derivation of Eq.([[#eq-29|29]]) we have assumed that <math display="inline">r_{m_i}</math> is negligible on the boundaries.
483
484
===5.2 Convective and pressure gradient projections===
485
486
The convective and pressure gradient projections <math display="inline">c_i</math> and <math display="inline">\pi _i</math> are defined as
487
<span id="eq-30"></span>
488
{| class="formulaSCP" style="width: 100%; text-align: left;" 
489
|-
490
| 
491
{| style="text-align: left; margin:auto;width: 100%;" 
492
|-
493
| style="text-align: center;" | <math>c_i = r_{m_i} -\rho v_j {\partial u_i \over \partial x_j}</math>
494
|}
495
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
496
|}
497
<span id="eq-31"></span>
498
{| class="formulaSCP" style="width: 100%; text-align: left;" 
499
|-
500
| 
501
{| style="text-align: left; margin:auto;width: 100%;" 
502
|-
503
| style="text-align: center;" | <math> \pi _i = r_{m_i} - {\partial p \over \partial x_i} </math>
504
|}
505
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
506
|}
507
508
We can now express <math display="inline">r_{m_i}</math> in Eqs.([[#eq-28|28]]) and ([[#eq-29|29]]) in terms of <math display="inline">c_i</math> and <math display="inline">\pi _i</math>, respectively which become additional variables. The system of integral equations is now augmented in the necessary number of equations by imposing that the residuals <math display="inline">r_{m_i}</math> vanish (in average sense) for both forms given by Eqs.([[#eq-30|30]]) and ([[#eq-31|31]]). The final system of integral equations is:
509
<span id="eq-32"></span>
510
{| class="formulaSCP" style="width: 100%; text-align: left;" 
511
|-
512
| 
513
{| style="text-align: left; margin:auto;width: 100%;" 
514
|-
515
| style="text-align: center;" | <math>\int _\Omega \left[\delta u_i\rho \left({\partial u_i \over \partial t}+v_j {\partial {u_i} \over \partial x_j}\right)+ \delta \varepsilon _{ij}(\tau _{ij}- \delta _{ij}p)\right] d\Omega -  \int _{\Omega } \delta u_i b_i d\Omega - \int _{\Gamma _t} \delta u_i t_id\Omega +</math>
516
|-
517
| style="text-align: center;" | <math>  + \sum \limits _e \int _{\Omega ^e} {h_k\over 2}{\partial (\delta u_i) \over \partial x_k} \left(\rho v_j {\partial {u_i} \over \partial x_j} + c_i\right)d\Omega =0</math>
518
|-
519
| style="text-align: center;" | <math> \int _\Omega q \left({\partial u_k \over \partial x_k}\right) d\Omega +  \int _\Omega \sum \limits _{i=1}^{n_d} \tau _i {\partial q \over \partial x_i} \left({\partial p \over \partial x_i}+\pi _i\right)d\Omega =0</math>
520
|-
521
| style="text-align: center;" | <math> \int _\Omega \delta c_i \rho \left(\rho v_j {\partial {u_i} \over \partial x_j} + c_i\right)d\Omega =0 \qquad \hbox{ no sum in }i</math>
522
|-
523
| style="text-align: center;" | <math> \int _\Omega \delta \pi _i \tau _i \left({\partial p \over \partial x_i}+\pi _i\right)d\Omega =0\qquad \hbox{ no sum in }i </math>
524
|}
525
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
526
|}
527
528
where <math display="inline">\delta c_i</math> and <math display="inline">\delta \pi _i</math> are appropriate weighting functions and the <math display="inline">\rho </math> and <math display="inline">\tau _i</math> terms are introduced in the last two equations for convenience. As usual <math display="inline">i,j,k=1,n_d</math>.
529
530
===5.3 Stabilized FIC equations for the free-surface wave condition===
531
532
We will derive next the FIC equation for the water wave surface.
533
534
Let us consider a 2D free-surface wave problem. Figure 3 shows a typical free-surface segment line <math display="inline">AB</math>. The average vertical velocity for the segment <math display="inline">\bar u_2</math> is defined as
535
536
{| class="formulaSCP" style="width: 100%; text-align: left;" 
537
|-
538
| 
539
{| style="text-align: left; margin:auto;width: 100%;" 
540
|-
541
| style="text-align: center;" | <math>\bar u_2 ={u_2^A + u_2^B\over 2}</math>
542
|}
543
| style="width: 5px;text-align: right;white-space: nowrap;" | (33a)
544
|}
545
546
where <math display="inline">u_2^A</math> and <math display="inline">u_2^B</math> are the vertical velocities of the end points of the segment <math display="inline">A</math> and <math display="inline">B</math>.
547
548
The average vertical velocity <math display="inline">\bar u_2</math> can be computed from the wave heights at points <math display="inline">A</math> and <math display="inline">B</math> as
549
550
{| class="formulaSCP" style="width: 100%; text-align: left;" 
551
|-
552
| 
553
{| style="text-align: left; margin:auto;width: 100%;" 
554
|-
555
| style="text-align: center;" | <math>\bar u_2 ={x_2^B -x_2^A\over \bar \delta }</math>
556
|}
557
| style="width: 5px;text-align: right;white-space: nowrap;" | (33b)
558
|}
559
560
where <math display="inline">\bar \delta </math> is the time which a material particle takes to travel from point <math display="inline">A</math> to point <math display="inline">B</math> at the average velocity <math display="inline">\bar u_2</math> and <math display="inline">x_2 \equiv \beta </math> is the free-surface wave height. Equaling Eq.(33a) and (33b) gives
561
562
{| class="formulaSCP" style="width: 100%; text-align: left;" 
563
|-
564
| 
565
{| style="text-align: left; margin:auto;width: 100%;" 
566
|-
567
| style="text-align: center;" | <math>{u_2^A + u_2^B\over 2}= {x_2^B -x_2^A\over \bar \delta }</math>
568
|}
569
| style="width: 5px;text-align: right;white-space: nowrap;" | (33c)
570
|}
571
572
We can now express the vertical velocities and the wave height at points <math display="inline">A</math> and <math display="inline">B</math> in terms of values at an arbitrary point <math display="inline">C</math> as
573
574
{| class="formulaSCP" style="width: 100%; text-align: left;" 
575
|-
576
| 
577
{| style="text-align: left; margin:auto;width: 100%;" 
578
|-
579
| style="text-align: center;" | <math>u_2^A = u_2 (x_1^C -d_1, t^C-\delta _1) = u_2^C -d_1 {\partial \beta  \over \partial x_1}-\delta _1 {\partial \beta  \over \partial t}+ O (d_1^2,t_1^2) </math>
580
|-
581
| style="text-align: center;" | <math> u_2^B = u_2 (x_1^C +d_2, t^C +\delta _2) = u_2^C +d_2 {\partial \beta  \over \partial x_2}+\delta _2 {\partial \beta  \over \partial t}+ O (d_2^2, t_2^2)</math>
582
|-
583
| style="text-align: center;" | <math> x_2^A= x_2 (x_1^C -d_1, t^C-\delta _1) = x_2^C -d_1 {\partial \beta  \over \partial x_1}-\delta _1 {\partial \beta  \over \partial t}+{d_1^2\over 2} {\partial ^2 \beta \over \partial x_1^2}+ </math>
584
|-
585
| style="text-align: center;" | <math> +\, d_1\delta _1 {\partial ^2 \beta \over \partial x_1\partial t}+{\delta _1^2\over 2}{\partial ^2 \beta \over \partial t^2} + O (d_1^3, \delta _1^3)</math>
586
|-
587
| style="text-align: center;" | <math> x_2^B= x_2 (x_1^C +d_2, t^C +\delta _2) = x_2^C +d_2 {\partial \beta  \over \partial x_1}+\delta _2 {\partial \beta  \over \partial t}+{d_2^2\over 2} {\partial ^2 \beta \over \partial x_1^2}+ </math>
588
|-
589
| style="text-align: center;" | <math> +\, d_2\delta _2 {\partial ^2 \beta \over \partial x_1\partial t}+{\delta _2^2\over 2}{\partial ^2 \beta \over \partial t^2} + O (d_2^3, \delta _2^3) </math>
590
|}
591
| style="width: 5px;text-align: right;white-space: nowrap;" | (34)
592
|}
593
594
where all the derivatives are computed at the arbitrary point <math display="inline">C</math>.
595
596
Substituting Eqs.(34) into (33c) and noting that <math display="inline">d\simeq u_1^C\bar \delta </math>, with <math display="inline">\bar \delta =(\delta _1+\delta _2)</math>, <math display="inline">d_1 \simeq u_1^C\delta _1</math> and <math display="inline">d_2 \simeq u_1^C\delta _2</math> (Figure 3)  and that the position of point <math display="inline">C</math> is arbitrary, gives the FIC equation for  the free-surface height (neglecting high order terms) as
597
598
{| class="formulaSCP" style="width: 100%; text-align: left;" 
599
|-
600
| 
601
{| style="text-align: left; margin:auto;width: 100%;" 
602
|-
603
| style="text-align: center;" | <math>r_\beta - \underline{{h\over 2}{\partial r_\beta  \over \partial x_1}}{h\over 2}{\partial r_\beta  \over \partial x_1} - \underline{{\delta \over 2}{\partial r_\beta  \over \partial t}}{\delta \over 2}{\partial r_\beta  \over \partial t}=0 </math>
604
|}
605
| style="width: 5px;text-align: right;white-space: nowrap;" | (35)
606
|}
607
608
with
609
610
{| class="formulaSCP" style="width: 100%; text-align: left;" 
611
|-
612
| 
613
{| style="text-align: left; margin:auto;width: 100%;" 
614
|-
615
| style="text-align: center;" | <math>r_\beta = {\partial \beta  \over \partial t}+u_1 {\partial \beta  \over \partial x_1}-u_2 </math>
616
|}
617
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
618
|}
619
620
where <math display="inline">h=(d_1 -d_2)</math> and <math display="inline">\delta = (\delta _1 - \delta _2)</math> are space and time stabilization parameters. The standard infinitesimal form of the free-surface wave condition is obtained by making <math display="inline">h=\delta =0</math> in Eq.(35) giving
621
622
{| class="formulaSCP" style="width: 100%; text-align: left;" 
623
|-
624
| 
625
{| style="text-align: left; margin:auto;width: 100%;" 
626
|-
627
| style="text-align: center;" | <math>{\partial \beta  \over \partial t}+u_1 {\partial \beta  \over \partial x_1}-u_2=0 </math>
628
|}
629
| style="width: 5px;text-align: right;white-space: nowrap;" | (37)
630
|}
631
632
which coincides with equation (11) for the 2D case.
633
634
A simpler FIC expression can be derived from Eq.(35) by retaining the second order space term only. This gives
635
636
{| class="formulaSCP" style="width: 100%; text-align: left;" 
637
|-
638
| 
639
{| style="text-align: left; margin:auto;width: 100%;" 
640
|-
641
| style="text-align: center;" | <math>{\partial \beta  \over \partial t}+u_1 {\partial \beta  \over \partial x_1}-{u_1h\over 2} {\partial ^2\beta \over \partial x_1^2}-u_2 = 0 </math>
642
|}
643
| style="width: 5px;text-align: right;white-space: nowrap;" | (38)
644
|}
645
646
This can be interpreted as the addition of an artificial diffusion term where <math display="inline">{u_1h\over 2}</math> plays the role of the new balancing diffusion coefficient.
647
648
In the following we will use the 3D ALE form of Eq.(35) neglecting the time stabilization term, given by
649
650
{| class="formulaSCP" style="width: 100%; text-align: left;" 
651
|-
652
| 
653
{| style="text-align: left; margin:auto;width: 100%;" 
654
|-
655
| style="text-align: center;" | <math>r_\beta - \underline{{h_j\over 2}{\partial r_\beta  \over \partial x_j}}{h_j\over 2}{\partial r_\beta  \over \partial x_j}=0\qquad \hbox{with }\quad  r_\beta = {\partial \beta  \over \partial t}+ v_j {\partial \beta  \over \partial x_j}-v_3 \quad , \quad j=1,2 </math>
656
|}
657
| style="width: 5px;text-align: right;white-space: nowrap;" | (39)
658
|}
659
660
where, as usual, <math display="inline">v_i</math> are the relative velocities between the fluid and the moving mesh nodes.
661
662
==6 FINITE ELEMENT DISCRETIZATION==
663
664
===6.1 Discretization of the fluid flow equations===
665
666
We will choose <math display="inline">C^\circ </math> continuous linear interpolations of the velocities, the pressure, the convection projections <math display="inline">c_i</math> and the pressure gradient projections <math display="inline">\pi _i</math> over three node triangles (2D) and four node tetrahedra (3D). The interpolations are written as
667
668
{| class="formulaSCP" style="width: 100%; text-align: left;" 
669
|-
670
| 
671
{| style="text-align: left; margin:auto;width: 100%;" 
672
|-
673
| style="text-align: center;" | <math>\begin{array}{l}u_i = \displaystyle \sum \limits _{j=1}^n N_j \bar u_i^j \quad , \quad p = \sum \limits _{j=1}^n N_j \bar p^j\\ c_i = \displaystyle \sum \limits _{j=1}^n N_j \bar c_i^j \quad , \quad \pi _i = \sum \limits _{j=1}^n N_j \bar \pi _i^j \end{array} </math>
674
|}
675
| style="width: 5px;text-align: right;white-space: nowrap;" | (40)
676
|}
677
678
where <math display="inline">n=3</math> (4) for triangles (tetrahedra), <math display="inline">\bar {(\cdot )}</math> denotes nodal variables and <math display="inline">N_j</math> are the linear shape functions (Zienkiewicz and Taylor, Vol 1 2000).
679
680
Substituting the approximations (40) into Eqs.(32) and choosing the Galerking form with <math display="inline">\delta u_i =q=\delta c_i=\delta \pi _i =N_i</math> leads to following system of discretized equations
681
682
{| class="formulaSCP" style="width: 100%; text-align: left;" 
683
|-
684
| 
685
{| style="text-align: left; margin:auto;width: 100%;" 
686
|-
687
| style="text-align: center;" | <math>{\boldsymbol M}\dot{\bar {\boldsymbol u}} + ({\boldsymbol A}+{\boldsymbol K}+\hat{\boldsymbol K}) \bar {\boldsymbol u} - {\boldsymbol G}\bar {\boldsymbol p}+{\boldsymbol C}\bar {\boldsymbol c}={\boldsymbol f}</math>
688
|}
689
| style="width: 5px;text-align: right;white-space: nowrap;" | (41a)
690
|}
691
692
{| class="formulaSCP" style="width: 100%; text-align: left;" 
693
|-
694
| 
695
{| style="text-align: left; margin:auto;width: 100%;" 
696
|-
697
| style="text-align: center;" | <math>{\boldsymbol G}^T \bar {\boldsymbol u} + {\boldsymbol L}\bar {\boldsymbol p}+{\boldsymbol Q}\bar {\boldsymbol \pi }={\boldsymbol 0}</math>
698
|}
699
| style="width: 5px;text-align: right;white-space: nowrap;" | (41b)
700
|}
701
702
{| class="formulaSCP" style="width: 100%; text-align: left;" 
703
|-
704
| 
705
{| style="text-align: left; margin:auto;width: 100%;" 
706
|-
707
| style="text-align: center;" | <math>\qquad \qquad \hat{\boldsymbol C}\bar {\boldsymbol u}+ {\boldsymbol M}\bar {\boldsymbol c}={\boldsymbol 0} </math>
708
|}
709
| style="width: 5px;text-align: right;white-space: nowrap;" | (41c)
710
|}
711
712
{| class="formulaSCP" style="width: 100%; text-align: left;" 
713
|-
714
| 
715
{| style="text-align: left; margin:auto;width: 100%;" 
716
|-
717
| style="text-align: center;" | <math>{\boldsymbol Q}^T \bar {\boldsymbol p} + \hat{\boldsymbol M}\bar {\boldsymbol \pi }={\boldsymbol 0}</math>
718
|}
719
| style="width: 5px;text-align: right;white-space: nowrap;" | (41d)
720
|}
721
722
The element contributions are given by (for 2D problems)
723
724
{| class="formulaSCP" style="width: 100%; text-align: left;" 
725
|-
726
| 
727
{| style="text-align: left; margin:auto;width: 100%;" 
728
|-
729
| style="text-align: center;" | <math>\displaystyle {\boldsymbol M}_{ij}\!\!=\!\! \int _{\Omega ^e} \rho {\boldsymbol N}_i{\boldsymbol N}_j d\Omega \quad ,\quad {\boldsymbol A}_{ij}= \!\int _{\Omega ^e}\! {\boldsymbol N}_i \rho v_k {\partial {\boldsymbol N}_j \over \partial x_k} d\Omega \quad ,\quad \displaystyle {\boldsymbol K}_{ij}= \! \int _{\Omega ^e}\! {\boldsymbol B}_i^T {\boldsymbol D}{\boldsymbol B}_j d\Omega </math>
730
|-
731
| style="text-align: center;" | 
732
|-
733
| style="text-align: center;" | <math> \hat{\boldsymbol K}_{ij}\!\!= \!\! \int _{\Omega ^e} \rho {h_k v_l\over 2}\displaystyle {\partial {\boldsymbol N}_i \over \partial x_k} \displaystyle {\partial {\boldsymbol N}_j \over \partial x_l}d\Omega \!\!\quad ,\quad \!\! \displaystyle {\boldsymbol G}_{ij}= \! \int _{\Omega ^e}\! ({\boldsymbol \nabla } N_i)N_j d\Omega \!\!\quad ,\!\!\quad {\boldsymbol C}_{ij}= \! \int _{\Omega ^e}\! {h_k \over 2} \displaystyle {\partial {\boldsymbol N}_i \over \partial x_k}{\boldsymbol N}_j d\Omega \, d\Omega </math>
734
|-
735
| style="text-align: center;" | 
736
|-
737
| style="text-align: center;" | <math> \displaystyle L_{ij}\!\!=\!\!\int _{\Omega ^e} {\boldsymbol \nabla }^T N_i [\tau ] {\boldsymbol \nabla } N_j d\Omega ~,~ \hat {\boldsymbol C}_{ij}=\!\int _{\Omega ^e}\! {\boldsymbol N}_i \rho ^2 v_k \displaystyle {\partial {\boldsymbol N}_j \over \partial x_k}d\Omega ~,~ {\boldsymbol \nabla }= \! \left\{\begin{array}{c}\displaystyle {\partial ~ \over \partial x_1}\\ \displaystyle {\partial ~ \over \partial x_2}\end{array}\right\}~,~ [\tau ]= \!\left[\begin{array}{cc}\tau _1 &0\\ 0&\tau _2\end{array}\right]  </math>
738
|-
739
| style="text-align: center;" | 
740
|-
741
| style="text-align: center;" | <math> {\boldsymbol Q}\!\!=\!\! [{\boldsymbol Q}^1,{\boldsymbol Q}^2] \quad ,\quad  Q_{ij}^k = \int _{\Omega ^e}\tau _k {\partial N_i \over \partial x_k} N_jd\Omega \quad \hbox{ no sum in } k</math>
742
| style="width: 5px;text-align: right;white-space: nowrap;" | (42)
743
|-
744
| style="text-align: center;" | 
745
|-
746
| style="text-align: center;" | <math> \hat{\boldsymbol M}\!\!=\!\! \left[\begin{array}{cc}\hat {\boldsymbol M}^1 &{\boldsymbol 0}\\  {\boldsymbol 0} & \hat {\boldsymbol M}^2\end{array}\right]\quad ,\quad  \hat{M}_{ij}^k = \int _{\Omega ^e} \tau _k N_i N_j d\Omega \quad ,\quad {\boldsymbol N}_i = N_i \left[\begin{array}{cc}1&0\\ 0&1 \end{array}\right]</math>
747
|-
748
| style="text-align: center;" | 
749
|-
750
| style="text-align: center;" | <math> {\boldsymbol f}_i\!\! =\!\! \int _{\Omega ^e} N_i {\boldsymbol b}d\Omega + \int _{\Gamma ^e}N_i {\boldsymbol t} d\Gamma \quad ,\quad  {\boldsymbol b}=[b_1,b_2]^T,\, {\boldsymbol t}=[t_1,t_2]^T </math>
751
|}
752
|}
753
754
with <math display="inline">i,j=1,n</math> and <math display="inline">k,l=1,n_d</math>.
755
756
In above <math display="inline">{\boldsymbol B}_i</math> is the standard strain rate matrix and <math display="inline">{\boldsymbol D}</math> the deviatoric constitutive matrix (for <math display="inline">\displaystyle {\partial u_i \over \partial x_i}=0</math>). For 2D problems
757
758
{| class="formulaSCP" style="width: 100%; text-align: left;" 
759
|-
760
| 
761
{| style="text-align: left; margin:auto;width: 100%;" 
762
|-
763
| style="text-align: center;" | <math>{\boldsymbol B}_i =\left[\begin{array}{cc}{\partial N_i \over \partial x_1}&0\\ 0 & {\partial N_i \over \partial x_2}\\ {\partial N_i \over \partial x_1} & {\partial N_i \over \partial x_2}\end{array}\right]\quad ,\quad {\boldsymbol D} =\mu \left[\begin{array}{ccc}2&0&0\\ 0&2&0\\ 0&0&1\end{array}\right] </math>
764
|}
765
| style="width: 5px;text-align: right;white-space: nowrap;" | (43)
766
|}
767
768
Note that the stabilization matrix <math display="inline">\hat{\boldsymbol K}</math> brings in an additional orthotropic diffusivity of value <math display="inline">\rho \displaystyle{h_k v_l\over 2}</math>. Matrices <math display="inline">{\boldsymbol A}, \hat {\boldsymbol K}</math> and <math display="inline">\hat{\boldsymbol C}</math> are dependent on the velocity field. The solution process can be advanced in time in a (quasi-nearly) implicit iterative manner using the following scheme.
769
770
===Step 1===
771
772
{| class="formulaSCP" style="width: 100%; text-align: left;" 
773
|-
774
| 
775
{| style="text-align: left; margin:auto;width: 100%;" 
776
|-
777
| style="text-align: center;" | <math>\bar{\boldsymbol u}^{n+1,i} = \bar{\boldsymbol u}^n - \Delta t {\boldsymbol M}^{-1} [({\boldsymbol A}^{n+\theta _1,i-1}+  {\boldsymbol K} + \hat {\boldsymbol K}^{n+\theta _1,i-1})\bar{\boldsymbol u}^{n+\theta _1,i-1}-{\boldsymbol G}{\boldsymbol p}^{n+\theta _2,i-1} + {\boldsymbol C} \bar {\boldsymbol c}^{n+\theta _3,i-1}-{\boldsymbol f}^{n+1}] </math>
778
|}
779
| style="width: 5px;text-align: right;white-space: nowrap;" | (44)
780
|}
781
782
===Step 2===
783
784
{| class="formulaSCP" style="width: 100%; text-align: left;" 
785
|-
786
| 
787
{| style="text-align: left; margin:auto;width: 100%;" 
788
|-
789
| style="text-align: center;" | <math>{\boldsymbol p}^{n+1,i}=- {\boldsymbol L}^{-1} [{\boldsymbol G}^T \bar {\boldsymbol u}^{n+1,i}+{\boldsymbol Q}\bar {\boldsymbol \pi }^{n+\theta _4,i-1}] </math>
790
|}
791
| style="width: 5px;text-align: right;white-space: nowrap;" | (45)
792
|}
793
794
===Step 3===
795
796
{| class="formulaSCP" style="width: 100%; text-align: left;" 
797
|-
798
| 
799
{| style="text-align: left; margin:auto;width: 100%;" 
800
|-
801
| style="text-align: center;" | <math>\bar {\boldsymbol c}^{n+1,i}= - {\boldsymbol M}^{-1} \hat {\boldsymbol C}^{n+1,i}\bar {\boldsymbol u}^{n+1,i} </math>
802
|}
803
| style="width: 5px;text-align: right;white-space: nowrap;" | (46)
804
|}
805
806
===Step 4===
807
808
{| class="formulaSCP" style="width: 100%; text-align: left;" 
809
|-
810
| 
811
{| style="text-align: left; margin:auto;width: 100%;" 
812
|-
813
| style="text-align: center;" | <math>\bar {\boldsymbol \pi }^{n+1,i}= -\hat {\boldsymbol M}^{-1}{\boldsymbol Q}^T \bar {\boldsymbol p}^{n+1,i} </math>
814
|}
815
| style="width: 5px;text-align: right;white-space: nowrap;" | (47)
816
|}
817
818
In above <math display="inline">\theta _i</math> are time integration parameters with <math display="inline">0\le \theta _i\le 1</math> and <math display="inline">\bar{(\cdot )}^{n,i}</math> denotes nodal values at the <math display="inline">n</math>th time step and the ith iteration. <math display="inline">{\boldsymbol A}^{n+\theta _1,i-1}\equiv {\boldsymbol A}(\bar {\boldsymbol u}^{n+\theta _1,i-1})</math> etc. Also <math display="inline">(\cdot )^{n+\theta _i,0}\equiv (\cdot )^n</math> for the computations in step 1 at the onset of the iterations.
819
820
Steps 1, 3 and 4 can be solved explicitely by choosing a ''lumped (diagonal) form'' of matrices '''M''' and <math display="inline">\hat {\boldsymbol M}</math>. In this manner the main computational cost is the solution of step 2 involving the inverse of a Laplacian matrix. This can be solved very effectively using an iterative method.
821
822
For <math display="inline">\theta _i\not =0</math> the iterative proces is unavoidable. The iterations follow until convergence is reached. This can be measured using an adequate error norm in terms of the velocity and pressure variables, or the residuals. Indeed some ot the <math display="inline">\theta _i</math>'s can be made equal to zero. Note that for <math display="inline">\theta _2=0</math> the algorithm is inconditionable unstable. A simple form is obtained making <math display="inline">\theta _1 = \theta _3=\theta _4=0</math>. This elliminates the non linear dependence with the velocity of matrices <math display="inline">{\boldsymbol A}</math> and <math display="inline">\hat{\boldsymbol K}</math>  during the iterative scheme.
823
824
Convergence of above solution scheme is however difficult for some problems. An enhanced version of the algorithm can be obtained by  adding the term <math display="inline">\hat {\boldsymbol  L} (\bar {\boldsymbol p}^{n+1,i} - \bar {\boldsymbol p}^{n+1,i-1})</math> where <math display="inline">\hat L_{ij} =\Delta t \int _{\Omega ^e} {\boldsymbol \nabla }^T N_i {\boldsymbol \nabla } N_j d\Omega </math> to the equation for the computation of the pressure in the second step. The new term acts as a preconditioner of the pressure equation given now by
825
826
{| class="formulaSCP" style="width: 100%; text-align: left;" 
827
|-
828
| 
829
{| style="text-align: left; margin:auto;width: 100%;" 
830
|-
831
| style="text-align: center;" | <math>\bar {\boldsymbol p}^{n+1,i}=-[{\boldsymbol L} + \hat {\boldsymbol L}]^{-1}[{\boldsymbol G}^T \bar {\boldsymbol u}^{n+1,i}+\hat {\boldsymbol L}\bar {\boldsymbol p}^{n+1,i-1} +{\boldsymbol Q}\bar {\boldsymbol \pi }^{n+\theta _4,i-1}] </math>
832
|}
833
| style="width: 5px;text-align: right;white-space: nowrap;" | (48)
834
|}
835
836
Note that the added term vanishes for the converged solution (i.e. when <math display="inline">\bar {\boldsymbol p}^{n+1,i}= \bar {\boldsymbol p}^{n+1,i-1}</math>).
837
838
An alternative to above algorithm is to use the fractional step method described in the nex section.
839
840
===6.2 Fractional step method===
841
842
The pressure can  be split from the discretized momentum equations (see Eq.(44)) as
843
844
{| class="formulaSCP" style="width: 100%; text-align: left;" 
845
|-
846
| 
847
{| style="text-align: left; margin:auto;width: 100%;" 
848
|-
849
| style="text-align: center;" | <math>\bar {\boldsymbol u}^* = \bar {\boldsymbol u}^n -\Delta t {\boldsymbol M}^{-1}[({\boldsymbol A}^{n+\theta _1}+  {\boldsymbol K} + \hat {\boldsymbol K}^{n+\theta _1})\bar{\boldsymbol u}^{n+\theta _1}-\alpha {\boldsymbol G}\bar{\boldsymbol p}^{n} + {\boldsymbol C} \bar {\boldsymbol c}^{n+\theta _3}-{\boldsymbol f}^{n+1}] </math>
850
|}
851
| style="width: 5px;text-align: right;white-space: nowrap;" | (49)
852
|}
853
854
{| class="formulaSCP" style="width: 100%; text-align: left;" 
855
|-
856
| 
857
{| style="text-align: left; margin:auto;width: 100%;" 
858
|-
859
| style="text-align: center;" | <math>\bar{\boldsymbol u}^{n+1}= \bar{\boldsymbol u}^*+\Delta t {\boldsymbol M}^{-1}{\boldsymbol G}\delta \bar{\boldsymbol p} </math>
860
|}
861
| style="width: 5px;text-align: right;white-space: nowrap;" | (50)
862
|}
863
864
In above equations <math display="inline">\alpha </math> is a variable taking values equal to zero or one. For <math display="inline">\alpha =0</math>, <math display="inline">\delta p \equiv p^{n+1}</math> (first order scheme) and for <math display="inline">\alpha =1</math>, <math display="inline">\delta p =\Delta p</math> (second order scheme) (Codina, 2001). Note that in both cases  the sum of Eqs.(49) and (50) gives the time discretization of the momentum equations with the pressures computed at <math display="inline">t^{n+1}</math>. The value of <math display="inline">\bar {\boldsymbol u}^{n+1}</math> from Eq.(50) is substituted now into (41b) to give
865
866
{| class="formulaSCP" style="width: 100%; text-align: left;" 
867
|-
868
| 
869
{| style="text-align: left; margin:auto;width: 100%;" 
870
|-
871
| style="text-align: center;" | <math>{\boldsymbol G}^T\bar {\boldsymbol u}^* + \Delta t {\boldsymbol G}^T {\boldsymbol M}^{-1}{\boldsymbol G}\delta \bar{\boldsymbol p} +  {\boldsymbol L} \bar{\boldsymbol p}^{n+1}+ {\boldsymbol Q}\bar {\boldsymbol \pi }^{n+\theta _4}=0 </math>
872
|}
873
| style="width: 5px;text-align: right;white-space: nowrap;" | (51a)
874
|}
875
876
The product <math display="inline">{\boldsymbol G}^T {\boldsymbol M}^{-1}{\boldsymbol G}</math> can be approximated by a laplacian matrix, i.e.
877
878
{| class="formulaSCP" style="width: 100%; text-align: left;" 
879
|-
880
| 
881
{| style="text-align: left; margin:auto;width: 100%;" 
882
|-
883
| style="text-align: center;" | <math>{\boldsymbol G}^T {\boldsymbol M}^{-1}{\boldsymbol G}=\hat {\boldsymbol L} \quad \hbox{with } \hat {\boldsymbol L} \simeq \int _{\Omega ^e} {1\over \rho } ({\boldsymbol \nabla }^T N_i) {\boldsymbol \nabla } N_j \,d\Omega  </math>
884
|}
885
| style="width: 5px;text-align: right;white-space: nowrap;" | (51b)
886
|}
887
888
A semi-implicit algorithm can be derived as follows.<br/>
889
890
'''Step 1''' Compute the nodal fractional velocities <math display="inline">{\boldsymbol u}^*</math> explicitely from Eq.(49) with <math display="inline">{\boldsymbol M}={\boldsymbol M}_d</math> where subscript <math display="inline">d</math> denotes a diagonal matrix.
891
892
<br/>
893
894
'''Step 2''' Compute <math display="inline">\delta \bar {\boldsymbol p}</math> from Eq.(51a) (using Eq.(51b)) as
895
896
{| class="formulaSCP" style="width: 100%; text-align: left;" 
897
|-
898
| 
899
{| style="text-align: left; margin:auto;width: 100%;" 
900
|-
901
| style="text-align: center;" | <math>\delta \bar {\boldsymbol p} =-({\boldsymbol L}+\Delta t \hat{\boldsymbol L})^{-1} [{\boldsymbol G}^T\bar{\boldsymbol u}^* +{\boldsymbol Q}\bar {\boldsymbol \pi }^{n+\theta _4}+{\boldsymbol L} \bar {\boldsymbol p}^n] </math>
902
|}
903
| style="width: 5px;text-align: right;white-space: nowrap;" | (52)
904
|}
905
906
'''Step 3''' Compute the nodal velocities <math display="inline"> \bar{\boldsymbol u}^{n+1}</math> explicitely from Eq.(50) with <math display="inline">{\boldsymbol M}={\boldsymbol M}_d</math>
907
908
<br/>
909
910
'''Step 4''' Compute <math display="inline"> \bar{\boldsymbol c}^{n+1}</math> explicitely from Eq.(46) using <math display="inline">{\boldsymbol M}_d</math>.
911
912
'''Step 5''' Compute <math display="inline"> \bar{\boldsymbol \pi }^{n+1}</math> explicitely from Eq.(47) with <math display="inline">\hat {\boldsymbol M} = \bar{\boldsymbol M}_d</math>.
913
914
This algorithm has an additional step than the iterative algorithm of Section 6.1. The advantage is that now Steps 1 and 2 can be fully linearized by choosing <math display="inline">\theta _1 = \theta _3=\theta _4=0</math>. Also the equation for the pressure variables in Step 2 has improved stabilization properties due to the additional laplacian matrix <math display="inline">\hat{\boldsymbol L}</math>.
915
916
Details on the stability properties of the FIC formulation for incompressible fluid flow problems can be found in Oñate ''et al.'' (2002).
917
918
===6.3 Discretization of free-surface wave equation===
919
920
The solution in time of Eq.(39) can be written in terms of the nodal velocities computed from the flow solution, as
921
922
{| class="formulaSCP" style="width: 100%; text-align: left;" 
923
|-
924
| 
925
{| style="text-align: left; margin:auto;width: 100%;" 
926
|-
927
| style="text-align: center;" | <math>\beta ^{n+1} = \beta ^n -\Delta t \left[v_i^{n+1,i} {\partial \beta ^n \over \partial x_i}-v_3^{n+1,i}-{h_{\beta _j}\over 2} {\partial r_\beta ^n \over \partial x_j}\right] </math>
928
|}
929
| style="width: 5px;text-align: right;white-space: nowrap;" | (53)
930
|}
931
932
Eq.(53) can now be discretized in space using the standard Galerkin method and solved ''explicitely'' for the nodal wave heights at <math display="inline">t^{n+1}</math>. Typically the general algorithm will be as follows:
933
934
<ol>
935
936
<li>Solve for the nodal velocities <math display="inline">\bar{\boldsymbol u}^{n+1}</math> and the pressures <math display="inline">\bar{\boldsymbol p}^{n+1}</math> in the fluid domain using any of the algorithms of Sections 6.1 and 6.2. When solving for the pressure equation impose <math display="inline">p^{n+1}= p_a</math> at the free-surface <math display="inline">\Gamma _\beta </math>.  </li>
937
938
<li>Solve for the free-surface elevation <math display="inline">\beta ^{n+1}</math> (viz. Eq.(53)).  </li>
939
940
<li>Compute the new position of the mesh nodes in the fluid domain at time <math display="inline">t^{n+1}</math>. Alternatively, regenerate a new mesh. </li>
941
942
</ol>
943
944
The mesh updating process can also include the free-surface nodes, although this is not strictly necessary. An ''hydrostatic adjustement'' can be implemented once the new free-surface elevation is computed simply by imposing the pressure at the nodes on the reference surface as
945
946
{| class="formulaSCP" style="width: 100%; text-align: left;" 
947
|-
948
| 
949
{| style="text-align: left; margin:auto;width: 100%;" 
950
|-
951
| style="text-align: center;" | <math>p^{n+1}=p_a + \rho g \Delta \beta \quad \hbox{with}\quad  \Delta \beta = \beta ^{n+1}- \beta ^{ref} </math>
952
|}
953
| style="width: 5px;text-align: right;white-space: nowrap;" | (54)
954
|}
955
956
where <math display="inline">g</math> is the gravity constant.
957
958
Eq.(54) takes into account the changes in the free-surface without the need of updating the reference surface nodes. A higher accuracy in the flow solution can be obtained by updating these nodes after a number of time steps.
959
960
==7 FLUID-SHIP INTERACTION==
961
962
The algorithms of previous section can be extended to account for the ship motion due to the hydrodynamic forces. Here the ship hull structure can be modelled as a rigid solid defined by the three translations and the three rotations of its center of gravity. Alternatively, the full deformation of the ship structure can be computed by modelling the actual stiffness of the hull, the decks and the different structural members. Indeed, the first option usually suffices for the hull shape optimization.
963
964
In both cases the computation of the ship motion involves solving the dynamic equations of the ship structure written as
965
966
{| class="formulaSCP" style="width: 100%; text-align: left;" 
967
|-
968
| 
969
{| style="text-align: left; margin:auto;width: 100%;" 
970
|-
971
| style="text-align: center;" | <math>{\boldsymbol M}_s \ddot {\boldsymbol d}+ {\boldsymbol K}_s {\boldsymbol d}={\boldsymbol f}_{ext} </math>
972
|}
973
| style="width: 5px;text-align: right;white-space: nowrap;" | (55)
974
|}
975
976
where <math display="inline">{\boldsymbol d}</math> and <math display="inline">\ddot {\boldsymbol d}</math> are the displacement and acceleration vectors of the nodes discretizing the ship structure, respectively, <math display="inline">{\boldsymbol M}_s</math> and <math display="inline">{\boldsymbol K}_s</math> are the mass and stiffness matrices of the structure and <math display="inline">{\boldsymbol f}_{ext}</math> is the vector of external nodal forces accounting for the fluid flow loads induced by the pressure and the viscous stresses. Clearly the main driving forces for the motion of the ship is the fluid pressure which acts in the form of a surface traction. Indeed Eq.(55) can be augmented with an appropriate damping term. The form of all the relevant matrices and vectors can be found in standard books on FEM for structural analysis (Zienkiewicz and Taylor, Vol 2 2000).
977
978
Solution of Eq.(55) in time can be performed using implicit or fully explicit time integration algorithms. In both cases the values of the nodal displacements, the velocities and the accelerations at time <math display="inline">t^{n+1}</math> are found.
979
980
A simple coupled fluid-ship-structure solution in time using, for instance, the  fractional step method of Section 6.2 (for <math display="inline">\theta _1=\theta _2=\theta _3=\theta _4=0</math>)  involves the following steps.
981
982
<br/>
983
984
'''Step 1''' Solve for the fractional velocities <math display="inline">\bar{\boldsymbol u}^*</math> using Eq.(49). Here use of <math display="inline">\alpha =1</math> is recommended.
985
986
<br/>
987
988
'''Step 2''' Compute <math display="inline">\delta \bar {\boldsymbol p}</math> from Eq.(51a) solving a simultaneous system of equations.<br/>
989
990
'''Step 3''' Compute explicitely the nodal velocities <math display="inline"> \bar{\boldsymbol u}^{n+1}</math> from Eq.(50) with a diagonal mass matrix.
991
992
<br/>
993
994
'''Step 4''' Compute explicitely the projected convective variables <math display="inline">\bar{\boldsymbol c}^{n+1}</math> from Eq.(46) using <math display="inline">{\boldsymbol M}_d</math>.
995
996
<br/>
997
998
'''Step 5''' Compute explicitely the projected pressure gradients <math display="inline">\bar {\boldsymbol \pi }^{n+1}</math> from Eq.(47) using <math display="inline">\hat{\boldsymbol M}_d</math>.
999
1000
<br/>
1001
1002
'''Step 6''' Compute explicitely the new position of the free-surface elevation <math display="inline">\bar{\boldsymbol \beta }^{n+1}</math> from Eq.(53).
1003
1004
<br/>
1005
1006
'''Step 7''' Compute the movement of the ship by solving the dynamic equations of motion for the ship structure under the hydrodynamic forces induced by the pressures <math display="inline">\bar {\boldsymbol p}^{n+1}</math> and the viscous stresses <math display="inline">{\boldsymbol s}^{n+1}</math>.
1007
1008
<br/>
1009
1010
'''Step 8''' Update the position of the mesh nodes in the fluid domain at <math display="inline">t^{n+1}</math> by using the mesh update algorithm described in the next section. The updating process can also include the free-surface nodes  although this is not strictly necessary  to be done at every time step and the hydrostatic adjustment of the pressure acting on the free-surface (Section 6.3)  can be used as an alternative.<br/>
1011
1012
Obviously, the use of a value different from zero for the <math display="inline">\theta _1,\theta _2,\theta _3</math> or <math display="inline">\theta _4</math> parameters will require an iterative process between steps 1 and 8 until a converged solution for the variables describing the fluid and ship motions is found.
1013
1014
A common option is to update the position of the mesh nodes only when  the iterative process for computing the fluid and ship variables has converged. Clearly the regeneration of the mesh is unavoidable  when the distorsion of the elements exceed a certain limit.
1015
1016
==8 A SIMPLE ALGORITHM FOR UPDATING THE MESH NODES==
1017
1018
Different techniques have been proposed for dealing with mesh updating in fluid-structure interaction problems. The general aim of all methods is to prevent element distortion during mesh deformation (Tezduyar, 2001a; Tezduyar ''et al.'', 1992b, 1992c).
1019
1020
Tezduyar ''et al.'' (1992c) and Chiandussi ''et al.'' (2000) have proposed simple method for  moving the  mesh nodes based on the iterative solution of a fictious linear elastic problem on the mesh domain. In the method introduced in Tezduyar ''et al.'' (1992c), the mesh deformation is handled selectively based on the element sizes and deformation modes, with the objective to increase stiffening of the smaller elements, which are typically located near solid surfaces. In Chiandusi ''et al.'' (2000) in order to minimize the mesh deformation the “elastic” properties of each mesh element are appropiately selected so that elements suffering greater movements are stiffer. A simple and effective procedure is to select the Poisson's ratio <math display="inline">\nu =0</math> and compute the “equivalent” Young modulus for each element by
1021
1022
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1023
|-
1024
| 
1025
{| style="text-align: left; margin:auto;width: 100%;" 
1026
|-
1027
| style="text-align: center;" | <math>E = {\bar E \over 3 \bar  \varepsilon ^2 }(\varepsilon _1^2+\varepsilon _2^2 + \varepsilon _3^2) </math>
1028
|}
1029
| style="width: 5px;text-align: right;white-space: nowrap;" | (56)
1030
|}
1031
1032
where <math display="inline">\varepsilon _i</math> are the principal strains, <math display="inline">\bar E</math> is an arbitrary value of the Young modulus  and <math display="inline">\bar \varepsilon </math> is a prescribed uniform strain field. <math display="inline">\bar E</math> and <math display="inline">\bar  \varepsilon </math> are constant for all the elements in the  mesh.
1033
1034
In summary, the solution scheme proposed by Chiandusi ''et al.'' (2000) includes the following two steps.
1035
1036
''Step 1''. Consider the FE mesh as a linear elastic solid with homogeneous material properties characterized by a prescribed uniform strain field <math display="inline">\bar  \varepsilon </math>, an arbitrary Young modulus <math display="inline">\bar E</math> and <math display="inline">\nu =0</math>. Solve a linear elastic problem with imposed displacements at the mesh boundary defined by the actual movement of the boundary nodes. An approximate solution to this linear elastic problem, such as that given by the first iterations of a conjugate gradient solution scheme, suffices for practical purposes.
1037
1038
''Step 2''. Compute the principal strains  in each element. Repeat the (approximate) FE solution of the linear elastic problem with prescribed boundary displacements using the values of <math display="inline">E</math> of Eq.(56).
1039
1040
The previous algorithm is able to treat the movement of the mesh due to changes in position of fully submerged and semi-submerged bodies such as ships. However if the floating body intersects the free-surface, the changes in the analysis domain  can be very important as emersion or inmersion of significant parts of the body can occur within a time step. A possible solution to this problem is to remesh the analysis domain. However, for most  problems a mapping of the moving surfaces linked to mesh updating algorithm described above can avoid remeshing. The surface mapping technique  used by the authors is based on transforming the 3D curved surfaces into reference planes (Figure 4). This makes it possible to compute within each plane the local (in-plane) coordinates of the nodes for the final surface mesh accordingly to the changes in the floating line. The final step is to transform back the local coordinates of the surface mesh in the reference plane to the final curved configuration which incorporates the new floating line (García, 1999; Oñate and García, 2001).
1041
1042
==9 MODELLING OF THE TRANSOM STERN FLOW==
1043
1044
The transom stern causes a discontinuity in the domain and the solution of the free-surface equation close to this region is inconsistent with the convective nature of the equation. This leads to instability of the wave height close to the transom region. This instability is found experimentally for low speeds. The flow at a sufficient high speed is physically  more stable although it still can not  be reproduced by  standard numerical techniques (Reed ''et al.'', 1990).
1045
1046
A solution to this problem is to apply adequate free-surface boundary conditions at the transom boundary. The obvious condition is to fix both the free surface elevation <math display="inline">\beta </math> and its derivative along the corresponding streamline to values given by the transom position and the surface gradient. However, prescribing those values can influence the transition between the transom flux and the lateral flux, resulting in unaccurate wave maps.
1047
1048
The method proposed in García and Oñate (2003) is to extend the free-surface below the ship. In this way the necessary Dirichlet boundary conditions imposed at the inflow  domain are enough to define a well posed problem. This method is valid both for the wetted and dry transom cases and it is also applicable  to ships with regular stern.
1049
1050
This scheme does not work for partially wetted transoms. This situation can occur for highly unsteady flows where wake vortex induces the free-surface deformation and the flow remains adhered to the transom. To favour the computation of the free-surface, an artificial viscosity term is added to the free-surface equation in the vicinity of the transom in these cases.
1051
1052
==10 LAGRANGIAN FLOW FORMULATION==
1053
1054
The Lagrangian formulation is an effective (and relatively simple) procedure for modelling the flow of fluid particles undergoing severe distorsions such as water jets, high amplitude waves, braking waves, water splashing, filling of cavities, etc. Indeed the Lagrangian formulation is very suitable for treating ship hydrodynamic  problems where the ship undergoes large motions. An obvious “a priori” advantage of the Lagrangian formulation is that both the ship and the fluid motion are defined in the same frame of reference.
1055
1056
The Lagrangian fluid flow equations are obtained by noting that the velocity of the mesh nodes and that of the fluid particles are the same. Hence the relative velocities <math display="inline">v_i</math> are zero in Eq.(21) and the convective terms vanish in the momentum equations, while the rest of the fluid flow equations remain unchanged. Also, the solution of the free surface equation is not needed in the Lagrangian formulation, as the free surface motion is modelled naturally by computing the displacement of (all) the fluid particles at each time step. In any case,  the new position of the free surface nodes must be properly identified as described below.
1057
1058
The FEM algorithms for solving the Lagrangian flow equations are very similar to those for the ALE description presented earlier. We will focus in the  second order fractional step algorithm of Section 6.2 (for <math display="inline">\theta _1 = \theta _4=0</math> and <math display="inline">\alpha =1</math>) accounting also for fluid-ship interaction effects.
1059
1060
'''Step 1''' Compute explicitely a predicted value of the velocities <math display="inline">{\boldsymbol u}^*</math> as
1061
1062
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1063
|-
1064
| 
1065
{| style="text-align: left; margin:auto;width: 100%;" 
1066
|-
1067
| style="text-align: center;" | <math>\bar{\boldsymbol u}^{*} = \bar{\boldsymbol u}^n - \Delta t {\boldsymbol M}^{-1}_d [{\boldsymbol K} \bar{\boldsymbol u}^{n}- {\boldsymbol G}\bar {\boldsymbol p}^{n} -{\boldsymbol f}^{n+1}] </math>
1068
|}
1069
| style="width: 5px;text-align: right;white-space: nowrap;" | (57)
1070
|}
1071
1072
Note that matrices '''A''' and <math display="inline">\bar{\boldsymbol K}</math> of Eq.(48) emanating from the convective terms have been elliminated.
1073
1074
'''Step 2''' Compute <math display="inline">\delta \bar {\boldsymbol p}</math> from Eq.(52).
1075
1076
'''Step 3''' Compute explicitely <math display="inline"> \bar{\boldsymbol u}^{n+1}</math> from Eq.(50) with <math display="inline">{\boldsymbol M}={\boldsymbol M}_d</math>.
1077
1078
'''Step 4''' Compute <math display="inline">\bar {\boldsymbol \pi }^{n+1}</math> explicitely from Eq.(46).
1079
1080
'''Step 5''' Solve for the motion of the ship structure by integrating Eq.(55).
1081
1082
'''Step 6''' Update the mesh nodes in a Lagrangian manner as
1083
1084
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1085
|-
1086
| 
1087
{| style="text-align: left; margin:auto;width: 100%;" 
1088
|-
1089
| style="text-align: center;" | <math>{\boldsymbol x}_i^{n+1} = {\boldsymbol x}_i^{n}+\bar {\boldsymbol u}_i \Delta t </math>
1090
|}
1091
| style="width: 5px;text-align: right;white-space: nowrap;" | (58)
1092
|}
1093
1094
'''Step 7''' Generate a new mesh and identify the new free surface nodes.
1095
1096
Further details of above algorithm can be found in Idelsohn ''et al.'' (2002, 2003a) and Oñate ''et al.'' (2003,2004).
1097
1098
The mesh regeneration process can be effectively performed using the extended Delaunay Tesselation described in Idelsohn ''et al.'' (2003b,c). This method allows the fast generation of good quality meshes combining four  node tetrahedra (or three node triangles in 2D) with hexahedra and non standard polyhedra such as pentahedra (or quadrilaterals and pentagons in 2D) where linear shape functions are derived using non-Sibsonian interpolation rules. The mesh regeneration can take place at each time step (this has been the case for the examples presented in the paper), after a prescribed number of time steps, or when  the nodal displacements induce significant element distorsions.
1099
1100
The identification of the free-surface nodes in the Lagrangian analysis can be made using the Alpha Shape method. This is based on the search of all nodes which are on an empty Voronoi sphere with a radius greater than a specified distance defined in terms of the mesh size. For details see  Edelsbrunner and Mucke (1994) and  Idelsohn ''et al.'' (2002, 2003a,b,c). A known value of the pressure (typically zero pressure or the atmospheric pressure) is prescribed at the free surface nodes.
1101
1102
The  conditions of prescribed velocities or pressures at the solid boundaries in the Lagrangian formulation are usually applied on a layer of nodes adjacent to the boundary. These nodes typically remain fixed during the solution process. Contact between water particles and the solid boundaries is accounted for by the incompressibility condition which naturally prevents the water nodes to penetrate into the solid boundaries. This simple way to treat the water-wall contact is another attractive feature of the Lagrangian flow formulation. For details see Idelsohn ''et al.'' (2002, 2003a) and Oñate ''et al.'' (2003,2004).
1103
1104
==11 MODELLING THE STRUCTURE AS A VISCOUS FLUID==
1105
1106
A simple and yet effective way to analyze the rigid motion of solid bodies in fluids with the Lagrangian flow description is to model the solid as a fluid with a viscosity much higher than that of the surrounding fluid. The fractional step scheme of Section 10 can be readily applied skipping now step 5 to solve for the motion of both fluid domains (the actual fluid and the fictitious fluid modelling the rigid body displacements of the solid).  An example of this type is presented in Sections 14.6.4 and 14.6.8.
1107
1108
Indeed this approach can be further extended to account for the elastic deformation of the solid treated now as a visco-elastic fluid. This will however introduce some complexity in the formulation and the full coupled fluid-structure interaction scheme previously described is preferable.
1109
1110
==12 COMPUTATION OF THE CHARACTERISTIC LENGTHS==
1111
1112
The evaluation of the stabilization parameters is a crucial issue in stabilized methods. Most existing methods use expressions which are direct extensions of the values obtained for the simplest 1D case. It is also usual to accept the so called SUPG assumption, i.e. to admit that vector <math display="inline">{\boldsymbol h}</math> has the direction of the velocity field. This  restriction leads to instabilities when sharp layers transversal to the velocity direction are present. This deficiency is usually corrected by adding a shock capturing or crosswind stabilization term (Hughes and Mallet, 1986; Tezduyar and Partk, 1986; Codina, 1993). Indeed, in the FIC formulation the components of <math display="inline">{\boldsymbol h}</math> introduce the necessary stabilization along both the streamline and transversal directions to the flow.
1113
1114
Excellent results have been obtained in all problems solved  with the ALE formulation using linear  tetrahedra with the value of the characteristic length vector  defined by
1115
1116
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1117
|-
1118
| 
1119
{| style="text-align: left; margin:auto;width: 100%;" 
1120
|-
1121
| style="text-align: center;" | <math>{\boldsymbol h}=h_s {{\boldsymbol u}\over {u}}+h_{c} {{\boldsymbol \nabla } u\over \vert{\boldsymbol \nabla }u\vert } </math>
1122
|}
1123
| style="width: 5px;text-align: right;white-space: nowrap;" | (59)
1124
|}
1125
1126
where <math display="inline">u=\vert {\boldsymbol u}\vert </math> and <math display="inline">h_s</math> and <math display="inline">h_{c}</math> are the “streamline” and “cross wind” contributions given by
1127
1128
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1129
|-
1130
| 
1131
{| style="text-align: left; margin:auto;width: 100%;" 
1132
|-
1133
| style="text-align: center;" | <math>h_s=\max ({\boldsymbol l}^T_j {\boldsymbol u})/{u} </math>
1134
| style="width: 5px;text-align: right;white-space: nowrap;" | (60)
1135
|-
1136
| style="text-align: center;" | <math> h_{c}=\max ({\boldsymbol l}^T_j {\boldsymbol \nabla }u)/ \vert {\boldsymbol \nabla }u\vert \quad , \quad  j=1,n_s </math>
1137
| style="width: 5px;text-align: right;white-space: nowrap;" | (61)
1138
|}
1139
|}
1140
1141
where <math display="inline">{\boldsymbol l}_j</math> are the vectors defining the element sides (<math display="inline">n_s=6</math> for tetrahedra).
1142
1143
The form chosen for the characteristic  length parameters is similar to that proposed by other authors (see references of previous paragraph and also  Donea and Huerta, 2003 and Tezduyar, 2001b).
1144
1145
As for the free-surface equation the following value of the characteristic length vector <math display="inline">{\boldsymbol h}_\beta </math> has been taken
1146
1147
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1148
|-
1149
| 
1150
{| style="text-align: left; margin:auto;width: 100%;" 
1151
|-
1152
| style="text-align: center;" | <math>{\boldsymbol h}_\beta =\bar h_s {{\boldsymbol u}\over {u}}+\bar h_c {{\boldsymbol \nabla }\beta \over \vert {\boldsymbol \nabla }\beta \vert }  </math>
1153
|}
1154
| style="width: 5px;text-align: right;white-space: nowrap;" | (62)
1155
|}
1156
1157
The streamline parameter <math display="inline">\bar h_s</math> has been obtained by Eq.(60) using the value of the velocity vector <math display="inline">\boldsymbol u</math> over the 3 node triangles discretizing the free-surface and <math display="inline">n_s=3</math>.
1158
1159
The cross wind parameter <math display="inline">\bar h_c</math> has been computed by
1160
1161
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1162
|-
1163
| 
1164
{| style="text-align: left; margin:auto;width: 100%;" 
1165
|-
1166
| style="text-align: center;" | <math>\bar h_c = \max [{\boldsymbol l}_j^T {\boldsymbol \nabla }\beta ] {1\over \vert {\boldsymbol \nabla }\beta \vert } \quad ,\quad j=1,2,3 </math>
1167
|}
1168
| style="width: 5px;text-align: right;white-space: nowrap;" | (63)
1169
|}
1170
1171
The cross-wind terms in eqs.(59) and (62) take into account  the gradient of the solution in the stabilization parameters. This is a standard assumption in shock-capturing stabilization procedures.
1172
1173
A more consistent evaluation of '''h''' based on a diminishing residual technique can be found in Oñate and García (2001).
1174
1175
==13 TURBULENCE MODELLING==
1176
1177
The detailed discussion on the treatment of turbulent effects in the flow equations falls outside the scope of this chapter. Indeed  any of the existing turbulence models is applicable.
1178
1179
In the examples presented next we have chosen a turbulence model based on the Reynolds averaged Navier-Stokes  equations where the deviatoric stresses are computed as sum of the standard viscous contributions and the so called Reynold stresses. Here we have chosen the Boussinesq assumption leading to a modification of the viscosity in the standard Navier-Stokes equations as sum of the “physical” viscosity <math display="inline">\mu </math> and a turbulent viscosity <math display="inline">\mu _T</math>.
1180
1181
One of the simplest and more effective choices for <math display="inline">\mu _T</math> is the Smagorinski LES model giving
1182
1183
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1184
|-
1185
| 
1186
{| style="text-align: left; margin:auto;width: 100%;" 
1187
|-
1188
| style="text-align: center;" | <math>\mu _T=C_l h^e (2\varepsilon _{ij}\varepsilon _{ij})^{1/2}  </math>
1189
|}
1190
| style="width: 5px;text-align: right;white-space: nowrap;" | (64)
1191
|}
1192
1193
where <math display="inline">h^e</math> is the element size and <math display="inline">C</math> is a constant (<math display="inline">C\simeq 0.01</math>). In the examples analyzed <math display="inline">h^e</math> has been taken equal to <math display="inline">(\Omega ^e)^{1/2} </math> and <math display="inline">(V^e)^{1/3} </math> for 2D and 3D situations, respectively.
1194
1195
Many other options are possible such as the one and two equations turbulence models (i.e. the <math display="inline">k</math> model and the <math display="inline">k - \varepsilon </math> and <math display="inline">k - w</math> models) and the algebraic stress models. For further details the reader is refered to specialized publications (Celik ''el al.'', 1982; Wilcox, 1994).
1196
1197
==14 EXAMPLES==
1198
1199
The examples chosen show the applicability of the ALE and Lagrangian formulations presented to solve ship hydrodynamics problems. The fractional step algorithm of Section 6.2 with <math display="inline">\theta _1 = \theta _3=\theta _4=0</math> and <math display="inline">\alpha =1</math> has been used. The first ALE example is the flow past a submerged NACA 0012 profile.  The next ALE examples include the analysis of a Wigley hull, a scale model of a commercial ship and two American Cup racing sail boats. Numerical results obtained with linear tetrahedral meshes are compared with experimental data in all cases.
1200
1201
The last series of examples show applications of the Lagrangian formulation to simple  schematic 2D ship hydrodynamics situations.
1202
1203
===14.1 Submerged NACA 0012 profile===
1204
1205
A  submerged NACA0012 profile at <math display="inline">\alpha=5^\circ </math> angle  of attack is studied using a 3D finite element model. This configuration was tested experimentally by Duncan (1983) and modelled numerically using the  Euler equations  by several authors (Hino ''et al.'', 1993; Löhner ''et al.'', 1998,1999; Idelsohn ''et al.'', 1999). The submerged depth of the airfoil is equal to the chord length L. The Froude number for all the cases tested was set to <math display="inline"> Fr={{U}\over \sqrt{{g L}}}= 0.5672 </math> where <math display="inline">U</math> is the incoming flow velocity at infinity.
1206
1207
The stationary free  surface and the pressure distribution in the domain are shown in Figure 5. The non-dimensional wave heights compare well with the experimental results.
1208
1209
===14.2 Wigley hull===
1210
1211
We study here the well known  Wigley Hull, given by  the analytical formula <math display="inline">y=0.5B(1 - 4x^2)(1 - z^2/D^2)</math> where <math display="inline">B</math> and <math display="inline">D</math>  are the beam and the draft of the ship hull at still water.
1212
1213
The same configuration was tested experimentally (Noblesse and McCarthy, 1983; Wigley, 1983) and modelled  numerically by several authors (Farmer ''et al.'', 1993; Storti ''et al.'', 1998; Idelsohn ''et al.'', 1999; Löhner ''et al.'', 1999). We use an unstructured 3D  finite  element mesh of 65434 linear tetrahedra,  with a reference surface of  7800 triangles, partially  represented in Figure 6. A Smagorinsky turbulence model was chosen.
1214
1215
Three different viscous cases were studied for <math display="inline">L=6m, F_n=0.316, \mu=10^{-3} Kg/m.s</math>. In the first case the volume mesh was considered fixed, not allowing free-surface nor ship movements. Next, the volume mesh was updated due to free-surface movement, while keeping the model fixed. The third case corresponds to the analysis of a real free model including the mesh updating due to free-surface displacement  and ship movement (sinkage and trim).
1216
1217
Table 1 shows the obtained total resistance coefficient in the three cases studied compared with experimental data.
1218
1219
1220
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
1221
|+ style="font-size: 75%;" |Table. 1 Wigley Hull. Total resistance coefficient values
1222
|- style="border-top: 2px solid;"
1223
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  
1224
| style="border-left: 2px solid;border-right: 2px solid;" | '''Experimental'''
1225
| style="border-left: 2px solid;border-right: 2px solid;" | '''Numerical'''
1226
|- style="border-top: 2px solid;"
1227
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  Test 1 
1228
| style="border-left: 2px solid;border-right: 2px solid;" | 5.2 <math display="inline">10^{-3}</math> 
1229
| style="border-left: 2px solid;border-right: 2px solid;" | 4.9 <math display="inline">10^{-3}</math>
1230
|- style="border-top: 2px solid;"
1231
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |   Test 2 
1232
| style="border-left: 2px solid;border-right: 2px solid;" | 5.2 <math display="inline">10^{-3}</math> 
1233
| style="border-left: 2px solid;border-right: 2px solid;" | 5.3 <math display="inline">10^{-3}</math>
1234
|- style="border-top: 2px solid;border-bottom: 2px solid;"
1235
| style="text-align: left;border-left: 2px solid;border-right: 2px solid;" |  Test 3 
1236
| style="border-left: 2px solid;border-right: 2px solid;" | 4.9 <math display="inline">10^{-3}</math> 
1237
| style="border-left: 2px solid;border-right: 2px solid;" | 5.1 <math display="inline">10^{-3}</math>
1238
1239
|}
1240
1241
Numerical values obtained for  sinkage and trim were -0.1% and 0.035, respectively, while experiments gave -0.15% and 0.04.
1242
1243
Figure 6a shows the pressure distribution obtained near the Wigley hull for the free model. Some streamlines have also been plotted. The mesh deformation in this case is shown in Figure 6a.
1244
1245
Comparison of the obtained body wave profile with experimental data for the free and fixed models is shown in Figure 6b. Significant differences are found close to stern for the fixed model.  The free-surface contours for the truly free ship motion are shown in Figure 6c.
1246
1247
===14.3 KVLCC2 hull model===
1248
1249
The example is the analysis of the KVLCC2 benchmark model. Here a partially wetted tramsom stern is expected due to the low Froude number of the test. Figure 7 shows the NURBS geometry obtained from the Hydrodynamic Performance Research team of Korea (KRISO). Numerical results are compared with the experimental data available from KRISO (2000).
1250
1251
The smallest element size used was 0.001 m and the largest 0.50 m.  The surface mesh chosen  is also shown in Figure 7. The 3D mesh included 550.000 tetrahedra.  The tramsom stern flow model described  was used.
1252
1253
''Test 1.-'' ''Wave pattern calculation''.  The main characteristics of the analysis are listed below:
1254
1255
* Length: 5.52 m, Beam (at water plane): 0.82 m, Draught: 0.18 m, Wetted Surface: <math display="inline">8.08 m^2</math>.
1256
* Velocity: 1.05 m/seg, Froude Number: 0.142.
1257
* Viscosity: <math display="inline">0.00126 Kg/m\cdot seg</math>, Density: <math display="inline">1000 Kg/m^3</math>, Reynolds number: <math display="inline">4.63\cdot 10^6</math>.
1258
1259
The turbulence model chosen was the <math display="inline">k</math> model. Figures 8 and 9 show the wave profiles on the hull and in  a cut at y/L = 0.0964 obtained for Test 1, compared to experimental data.  The results are quantitatively good.
1260
1261
''Test 2.-'' ''Wake analysis at different planes''. Several turbulence models were  used (''Smagorinsky'', <math display="inline">k</math> and <math display="inline">k-\epsilon </math> model) in order to verify the quality of the results. Here, only the results from the <math display="inline">k-\epsilon </math> model are shown. The velocity maps obtained even for the simplest <math display="inline">Smagorinsky</math> model were qualitatively good. The main characteristics of this analysis are:
1262
1263
* Length: 2.76 m, Beam (at water plane): 0.41 m, Draught: 0.09 m, Wetted Surface: <math display="inline">2.02 m^2</math>.
1264
* Velocity: 25 m/seg.
1265
* Viscosity: <math display="inline">3.05\cdot 10^{-5} Kg/m\cdot seg</math>, Density: <math display="inline">1.01 Kg/m^3</math>, Reynolds number: <math display="inline">4.63\cdot 10^6</math>.
1266
1267
Figures 10 and 11 present some results for Test 2.  Figure 10 shows the contours of the axial (X) component of the velocity on a plane at 2.71 m from the orthogonal aft. Figure 11 shows the map of the kinetic energy at this plane. Experimental results are also plotted for comparison. Further results are reported in García and Oñate (2003).
1268
1269
===14.4 American Cup Rioja de España Model===
1270
1271
The Rioja de España boat representing Spain in the American Cup's edition of 1995 was analyzed. Figure 12 shows the geometry of the boat based on standard NURBS surfaces. Numerical results are compared with an extrapolation of experimental data obtained in CEHIPAR basin (Spain) using a 1/3.5 scale model. Resistance tests were performed with the model free to sink and trim.  Experimental data  include drag, lift, sinkage, trim angles and wave profiles at 4.27m (real scale) from symmetry plane.  Every model was towed at equivalent velocities of 10, 9, 8.5, 8.0, 7.5 and 7.0 knots.
1272
1273
Numerical analysis  were carried out at real scale. Characteristics of unstructured grids of four node linear tetrahedra used are shown in Table 2 together with the parameters of some of the  model studied.
1274
1275
1276
{|  class="floating_tableSCP wikitable" style="text-align: left; margin: 1em auto;min-width:50%;"
1277
|+ style="font-size: 75%;" |Table. 2 Rioja de España. Analysis parameters.
1278
|- style="border-top: 2px solid;"
1279
| style="border-left: 2px solid;border-right: 2px solid;" |   '''Test'''
1280
| style="border-left: 2px solid;border-right: 2px solid;" | '''Geometry'''
1281
| style="border-left: 2px solid;border-right: 2px solid;" | '''Heel''' 
1282
| style="border-left: 2px solid;border-right: 2px solid;" | '''Drift'''
1283
| style="text-align: center;border-left: 2px solid;border-right: 2px solid;" | '''Symmetry'''
1284
| style="text-align: right;border-left: 2px solid;border-right: 2px solid;" | '''Elements'''
1285
| style="text-align: right;border-left: 2px solid;border-right: 2px solid;" | '''nodes'''
1286
|- style="border-top: 2px solid;"
1287
| style="border-left: 2px solid;border-right: 2px solid;" |  E0D0 
1288
| style="border-left: 2px solid;border-right: 2px solid;" |  Hull, bulb and keel 
1289
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0^\circ </math> 
1290
| style="border-left: 2px solid;border-right: 2px solid;" | <math>0^\circ </math>
1291
| style="text-align: center;border-left: 2px solid;border-right: 2px solid;" | Yes 
1292
| style="text-align: right;border-left: 2px solid;border-right: 2px solid;" | 700 000 
1293
| style="text-align: right;border-left: 2px solid;border-right: 2px solid;" | 175 000
1294
|- style="border-top: 2px solid;"
1295
| style="border-left: 2px solid;border-right: 2px solid;" |  E15D2 
1296
| style="border-left: 2px solid;border-right: 2px solid;" | Hull, bulb, keel and rudder 
1297
| style="border-left: 2px solid;border-right: 2px solid;" | <math>15^\circ </math> 
1298
| style="border-left: 2px solid;border-right: 2px solid;" | <math>2^\circ </math>
1299
| style="text-align: center;border-left: 2px solid;border-right: 2px solid;" | No 
1300
| style="text-align: right;border-left: 2px solid;border-right: 2px solid;" | 1 500 000 
1301
| style="text-align: right;border-left: 2px solid;border-right: 2px solid;" | 380 000
1302
|- style="border-top: 2px solid;"
1303
| style="border-left: 2px solid;border-right: 2px solid;" |  E15D4 
1304
| style="border-left: 2px solid;border-right: 2px solid;" | Hull, bulb, keel and rudder 
1305
| style="border-left: 2px solid;border-right: 2px solid;" | <math>15^\circ </math> 
1306
| style="border-left: 2px solid;border-right: 2px solid;" | <math>4^\circ </math>
1307
| style="text-align: center;border-left: 2px solid;border-right: 2px solid;" | No 
1308
| style="text-align: right;border-left: 2px solid;border-right: 2px solid;" | 1 500 000 
1309
| style="text-align: right;border-left: 2px solid;border-right: 2px solid;" | 380 000
1310
|- style="border-top: 2px solid;border-bottom: 2px solid;"
1311
| style="border-left: 2px solid;border-right: 2px solid;" |  E25D2 
1312
| style="border-left: 2px solid;border-right: 2px solid;" | Hull, bulb, keel and rudder 
1313
| style="border-left: 2px solid;border-right: 2px solid;" | <math>25^\circ </math> 
1314
| style="border-left: 2px solid;border-right: 2px solid;" | <math>2^\circ </math>
1315
| style="text-align: center;border-left: 2px solid;border-right: 2px solid;" | No 
1316
| style="text-align: right;border-left: 2px solid;border-right: 2px solid;" | 1 500 000 
1317
| style="text-align: right;border-left: 2px solid;border-right: 2px solid;" | 380 000
1318
1319
|}
1320
1321
All grids used were generated with the same quality criteria and using element sizes from 5mm to 2000 mm. Some details of the grid used in the E0D0 case are shown in Figures 13 and&nbsp;14. A <math display="inline">k-\varepsilon </math> turbulence model in combination with an extended law of the wall was chosen for the analysis.
1322
1323
A time step of 0.1 seconds was used and this sufficed to achieve a steady state solution in all cases. Additional calculations were carried out  with <math display="inline">\Delta t  = 0.025s</math> and <math display="inline">0.01s</math>, in order to verify the influence of the time increment in the accuracy of the results. No significant influence was detected for the selected results.
1324
1325
Figure 16 shows a comparison of simulated and experimental wave profiles. The origin of the x axis has been taken at the fore perpendicular and the x+ sense is afore. In the non symmetric case, the measurements were performed at the opposite side of the heeled board. The ratio of maximum amplitudes of fluctuations (noise) and waves in the experimental measurements varies from 4% to 12%
1326
1327
Figures 16 and 17 show pressure contours on the bulb and keel for different cases, corresponding to a velocity of 8 kn. Figures 18 to 19 show some of the wave patterns obtained  for a velocity of 9 kn.  Figures 21 and 22 show some perspective views, including pressure and velocity contours, streamlines and cuts for some cases analyzed. Finally Figures 23 and 24 show resistance graphs where numerical results are compared with values ''extrapolated'' from experimental data. For further details see García ''et al.'' (2002).
1328
1329
===14.5 American Cup BRAVO ESPAA Model===
1330
1331
The finite element formulation presented was also applied to study the racing sail boat ''Bravo España'' participating in the 1999 edition of the American Cup. The  mesh of linear tetrahedra used is shown in Figure 25. Results presented in Figures&nbsp;25&#8211;27 correspond to a non symmetrical case including appendages. Good comparison between experimental data and numerical results was again obtained Further details can be found in García and Oñate (2002).
1332
1333
===14.6 Lagrangian flow examples===
1334
1335
A number of simple problems have been solved in order to test the capabilities of the Lagrangian flow formulation to solve ship hydrodynamics problem. All examples have been analyzed with the algorithm described in Section 10. We note again that the regeneration of the mesh has been performed at each time step.
1336
1337
====14.6.1 Rigid ship hit by wave====
1338
1339
The first example is a very schematic representation of a ship when  is hit by a big wave produced by the collapse of a water recipient (Fig. 28). The ship can not move and initially the free-surface near the ship is horizontal. Fixed nodes represent the ship as well as the domain walls. The example tests the suitability of the Lagrangian flow formulation to solve water-wall contact situations even in the presence of curved walls. Note the breaking and splashing of the waves under the ship prow and the rebound of the incoming wave. It is also interesting to see the different water-wall contact situations at the internal and external ship surfaces and the moving free-surface at the back of the ship.
1340
1341
====14.6.2 Horizontal motion of a rigid ship in a reservoir====
1342
1343
In the next example (Fig. 29) the same ship of the previous example moves now horizontally at a fixed velocity in a water reservoir.   The free-surface, which was initially horizontal, takes the correct position at the ship prow and stern. Again, the complex water-wall contact problem is naturally solved in the curved prow region.
1344
1345
====14.6.3 Semi-submerged rotating water mill====
1346
1347
The  example shown in Figure 30 is the analysis of a rotating water mill semi submerged in water. The blades of the mill are treated as a rigid body with an imposed rotating velocity, while the water is initially in a stationary  flat position. Fluid structure interactions with free-surfaces and water fragmentation are well reproduced in this example.
1348
1349
====14.6.4 Floating wood piece====
1350
1351
The next example shows an initially stationary recipient with a floating piece of wood where a wave is produced on the left side. The wood has been simulated by a liquid of higher viscosity as described in Section 11. The wave intercepts the wood piece producing a breaking wave and displacing the floating wood as shown in Figure 31.
1352
1353
====14.6.5 Ships hit by an incoming wave====
1354
1355
In the example of Figure 32 the motion of a fictitious rigid ship hit by an incoming wave is analyzed.  The dynamic motion of the ship is induced by the resultant of the pressure and the viscous forces acting on the ship boundaries.  We note that  the horizontal displacement of the gravity center of the ship was fixed to zero. In this way, the ship moves only vertically although it can freely rotate. The position of the ship boundary at each time step defines a moving boundary condition for the free surface particles in the fluid. Figure 32 shows instants of the motion of the ship and the surrounding fluid. It is interesting to see the breaking of a wave on the ship prow as well as on the stern when the wave goes back. Note that some water drops slip over the ship deck.
1356
1357
Figure 33 shows the analysis of a similar problem using precisely the same approach. The section of the ship analyzed corresponds now to that of a real container ship. Differently to the previous case the rigid ship is  free to move laterally due to the sea wave forces. The objective of the study was to asses the influence of the stabilizers in the ship roll. The figures show clearly how the lagrangian method predicts the ship and wave motions in a realistic manner.
1358
1359
====14.6.6 Tank-ship hit by a lateral wave====
1360
1361
Figure 34 represents a transversal section of a tank-ship and a wave approaching to it. The tank-ship is modelled as a rigid body and it carries a liquid inside which moves freely within the ship domain.
1362
1363
Initially (<math display="inline">t = 0.00</math>) the ship is released from a fixed position and the equilibrium configuration found is consistent with Arquimides principle. During the following time steps the external wave hits the ship and both the internal and the external fluids interact with the ship boundaries. At times <math display="inline">t=6.15</math> and 8.55 breaking waves and some water drops slipping along the ship deck can be observed. Figure 35 shows the pressure pattern at two time steps.
1364
1365
====14.6.7 Rigid cube falling in a recipient with water====
1366
1367
The last examples show the capacity of the Lagrangian formulation to analyze the motion of solids within water. In the first example a  solid cube is initially  free and falls down within a water recipient. In this example, the rigid solid is modeled first as a fictitious fluid with a higher viscosity,  similarly as for  the floating solid of Section 14.6.4. The results of this analysis are shown in Figure 36. Note that the method reproduces very well the interaction of the cube with the free surface as well as the overall sinking process. A small deformation of the cube is produced. This can be reduced by increasing further the fictitious viscosity of the cube particles.
1368
1369
The same problem is analyzed again considering now the cube as a  rigid solid subjected to  pressure and viscous forces acting in its boundaries. The resultant of the fluid forces and the weight of the cube are applied to the center of the cube. These forces govern the displacement of the cube which is computed by solving  the dynamic equations of motion as described in the fractional step algorithm of Section 10, similarly as for the rigid ships of the three previous examples. Similarly as in those cases the moving cube contours define a boundary condition for the fluid particles at each time step.
1370
1371
Initially the solid falls down freely due to the gravity forces (Figure 37). Once in contact with the water surface, the alpha-shape method recognizes the different boundary contours which are shown with a thick line in the figure.  The pressure  and viscous forces are evaluated in all the domain and in particular on the cube contours. The fluid forces introduce a negative acceleration in the vertical motion until, once the cube is completely inside the water, the vertical  velocity  becomes zero. Then,  Arquimides  forces bring the cube up to the free-surface. It is interesting to observe that there is a rotation of the cube. The reason is that the center of the floating forces is higher in the rotated position than in the initial ones.
1372
1373
Figure 38 shows a repetition of the same problem showing now all the finite elements in the mesh discretizing the fluid. We recall that in all the Lagrangian problems here described the mesh in the fluid domain ''is regenerated at each time step'' combining linear triangles and quadrilateral elements as described in Section 10. Note that some fluid particles separate from the fluid domain. These particles are treated as free boundary points with zero pressure and hence fall down due to gravity.
1374
1375
It is interesting to see that the final position of the cube is different from that of Figure 37. This is due to the unstable character of the cube motion. A small difference in the numerical computations (for instance in the mesh generation process) shifts the movement of the cube towards the right or the left. Note however that a final rotated equilibrium position is found in both cases.
1376
1377
Further examples of the Lagrangian flow formulation can be found in Oñate ''et al.'' (2003, 2004) and Idelsohn ''et al.'' (2002a,2003).
1378
1379
==15 CONCLUDING REMARKS==
1380
1381
An overview of different finite element schemes for solving ship hydrodynamics problems has been presented. The necessary stabilization in the numerical computation has been provided by the finite calculus formulation of the fluid flow equations accounting for surface wave effects.
1382
1383
Stabilized finite algorithms for solving a variety of ship hydrodynamics situations using ALE and fully Lagrangian descriptions have been presented. Both monolithic and fractional step algorithms have been derived. The interaction of the motion of the ship structure with the fluid equations can be accounted for in a straight forward manner within the general flow solution schemes. The ALE formulation is particularly adequate for ship hydrodynamics problems involving free-surface waves of moderate amplitude. The Lagrangian flow formulation allows to solve in a simple and  effective manner ship hydrodynamics problems involving large motions of the free-surface and complex fluid-structure interaction situations.
1384
1385
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">ACKNOWLEDGEMENTS</div>
1386
1387
1388
1389
The authors thank Prof. R. Löhner, Prof. P. Bergan, Dr. C. Sacco and Dr. H. Sierra for many useful discussions.
1390
1391
Thanks are also given to Dr. F. del Pin and Mr. N. Calvo for their help and involvement in solving the problems with the Lagrangian formulation.
1392
1393
The authors are grateful to Copa America Desafio Español SA and CEHIPAR for providing the geometry and experimental data for the racing boats analyzed and to Det Norske Veritas for providing the geometry of the ship with stabilizers for the analysis shown in Figure 33..
1394
1395
The Spanish company COMPASS Ingeniería y Sistemas SA (www.compassis.com) provided the computer code Tdyn for the numerical simulation of the examples solved with the ALE formulation (Tdyn, 2004). This support is gratefully acknowledged.
1396
1397
==REFERENCES==
1398
1399
<div id="cite-1"></div>
1400
[1] Alessandrini B and  Delhommeau G. A multigrid velocity-pressure-free-surface elevation fully coupled solver for calculation of turbulent incompressible flow around a hull. In ''Proc. of the 21st Symp. on Naval Hydrodynamics'', Trondheim, Norway, 1996, 40&#8211;55.
1401
1402
<div id="cite-2"></div>
1403
[2] Alessandrini B and Delhommeau G. A Fully Coupled Navier-Stokes Solver for Calculation of Turbulent Incompressible Free-Surface Flow Past a Ship Hull. ''J. Numer. Meth. Fluids'' 1999; 29:125&#8211;142.
1404
1405
<div id="cite-3"></div>
1406
[3] Aliabadi S and Shujaee S. free-surface flow simulations using parallel finite element method. ''Simulation'' 2001; 76(5):257&#8211;262.
1407
1408
<div id="cite-4"></div>
1409
[4]  Aliabadi S, Abedi J and Zellars B. Parallel finite element simulation of mooring forces on floating objects. Submitted to ''Int. J. Num. Meth. Fluids'' 2002.
1410
1411
<div id="cite-5"></div>
1412
[5]  Azcueta R, Muzaferija S and Peric M. Computation of breaking bow waves for a very full hull ship. ''7th Int. Conf. on Num. Ship Hydro.'' 1999, Nantes, France, 6.2-1, 11.
1413
1414
<div id="cite-6"></div>
1415
[6] Baba E and Takekuma K. A study on free-surface flow around bow of slowly moving full forms. ''J. Soc. Naval Architects Japan'' 1975; 137.
1416
1417
<div id="cite-7"></div>
1418
[7] Bai KJ and McCarthy JH (eds). ''Proceedings of the Workshop on Ship Wave-Resistance Computations'', Bethesda, MD, USA, 1979.
1419
1420
<div id="cite-8"></div>
1421
[8]  Beck, RF, Cao, Y and Lee T-H. Fully nonlinear water wave computations using the desingularized method. Proceedings ''Sixth International Conference on Numerical Ship Hydrodynamics'', The University of Iowa, Iowa City, Aug. 1993.
1422
1423
<div id="cite-9"></div>
1424
[9] Brezzi F, Franca LP, Hughes TJR and Russo A. <math display="inline">b=\int  g</math>. ''Comput. Methods Appl. Mech. Engrg.'' 1997; 145:329&#8211;339.
1425
1426
<div id="cite-10"></div>
1427
[10] Briley WR, Neerarambam SS and Whitfield DL. Multigrid algorithm for three-dimensional incompressible high-Reynolds number turbulent flows. ''AIAA Journal'' 1995; 33 (1):2073&#8211;2079.
1428
1429
<div id="cite-11"></div>
1430
[11] Brooks A and Hughes TJR. Streamline upwind/Petrov-Galerkin  formulation for convection dominated flows with particular emphasis  on the incompressible Navier-Stokes equations. ''Comput. Methods Appl.  Mech. Engrg'' 1982; 32:199&#8211;259.
1431
1432
<div id="cite-12"></div>
1433
[12] Celik I; Rodi W and  Hossain MS.  Modelling of free-surface proximity effects on turbulence. ''Proc. Refined Modelling of Flows'', Paris, 1982.
1434
1435
<div id="cite-13"></div>
1436
[13] Chiandusi G, Bugeda G and Oñate E. A simple method for update of finite element meshes. ''Commun, Numer. Meth. Engng.'' 2000; 16:1&#8211;9.
1437
1438
<div id="cite-14"></div>
1439
[14] Chorin AJ. A numerical solution for solving incompressible viscous flow problems. ''J. Comp. Phys.'' 1967; 2:12&#8211;26.
1440
1441
<div id="cite-15"></div>
1442
[15] Codina R. A discontinuity-capturing crosswind dissipation for the finite element solution of the convection-diffusion equation. ''Comput. Methods Appl. Mech. Engrg.'' 1993; 110:325&#8211;342.
1443
1444
<div id="cite-16"></div>
1445
[16] Codina R. Comparison of some finite element methods for solving the diffusion-convection-reaction equation. ''Comput. Methods Appl. Mech. Engrg.'' 1998; 156:185&#8211;210.
1446
1447
<div id="cite-17"></div>
1448
[17] Codina R. On stabilized finite element methods for linear systems of convection-diffusion-reaction equation. ''Comput. Methods Appl. Mech. Engrg.'' 2000;  188:61&#8211;83.
1449
1450
<div id="cite-18"></div>
1451
[18] Codina R. Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. ''Comput. Methods Appl. Mech. Engrg.'' 2000; 191:4295&#8211;4321.
1452
1453
<div id="cite-19"></div>
1454
[19] Codina R. A stabilized finite element method for generalized stationary incompressible flows. ''Computer Methods in Applied Mechanics and Engineering'' 2001; 190:2681-2706.
1455
1456
<div id="cite-20"></div>
1457
[20] Codina R. Pressure stability in fractional step finite element methods for incompressible flows. ''Journal of Computational Physics'' 2001; 170:112&#8211;140.
1458
1459
<div id="cite-21"></div>
1460
[21]  Codina R. Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. ''Comput. Methods Appl. Mech. Engrg.'' 2002; 191:4295&#8211;4321.
1461
1462
<div id="cite-22"></div>
1463
[22] Codina R and Blasco J. A finite element formulation for the Stokes problem allowing equal velocity - pressure interpolation. ''Comput. Methods Appl. Mech. Engrg.'' 1997; 143:373&#8211;391.
1464
1465
<div id="cite-23"></div>
1466
[23] Codina R, Vazquez M, Zienkiewicz OC. A general algorithm for compressible and incompressible flow - Part III. The semi-implicit form. ''Int. J. Num. Meth. in Fluids'' 1998; 27:13&#8211;32.
1467
1468
<div id="cite-24"></div>
1469
[24] Codina R and Blasco J. Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient operator.  ''Comput. Methods in Appl. Mech. Engrg.'' 2000; 182:277&#8211;301.
1470
1471
<div id="cite-25"></div>
1472
[25]  Codina R and Zienkiewicz OC. CBS versus GLS stabilization of the incompressible Navier-Stokes equations and the role of the time step as stabilization parameter. ''Communications in Numerical Methods in Engineering'' 2002; 18 (2):99&#8211;112.
1473
1474
<div id="cite-26"></div>
1475
[26]  Codina R, Schafer U and  Oñate E. Mould filling simulation using finite elements. ''Int. J. Num. Meth. Heat Fluid Flows'' 1994; 4:291&#8211;310.
1476
1477
<div id="cite-27"></div>
1478
[27] Cruchaga MA and Oñate E. A finite element formulation for incompressible flow problems using a generalized streamline operator. ''Comput. Methods in Appl. Mech. Engrg.'' 1997; 143:49&#8211;67.
1479
1480
<div id="cite-28"></div>
1481
[28] Cruchaga MA and Oñate E. A generalized streamline finite element approach for the analysis of incompressible flow problems including moving surfaces. ''Comput. Methods in Appl. Mech. Engrg.'' 1999; 173:241&#8211;255.
1482
1483
<div id="cite-29"></div>
1484
[29] Dawson CW. A practical computer method for solving ship-wave problems. ''Proc. 2nd Int. Conf. Num. Ship Hydrodynamics'', USA, 1977.
1485
1486
<div id="cite-30"></div>
1487
[30] Donea J. A Taylor-Galerkin method for convective transport problems. ''Int. J. Num. Meth. Engng.'' 1984; 20:101&#8211;119.
1488
1489
<div id="cite-31"></div>
1490
[31] Donea J and Huerta A. ''Finite element method for flow problems'', J. Wiley, 2003.
1491
1492
<div id="cite-32"></div>
1493
[32] Douglas J, Russell TF. Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. ''SIAM J. Numer. Anal.'' 1982; 19:871.
1494
1495
<div id="cite-33"></div>
1496
[33] Duncan JH. The breaking and non-breaking wave resistance of a two-dimensional hydrofoil. ''J. Fluid Mech.'' 1983; 126.
1497
1498
<div id="cite-34"></div>
1499
[34] Edelsbrunner H and Mucke EP. Three dimensional alpha-shape. ''ACM Transaction on Graphics'' 1994; 3:43&#8211;72.
1500
1501
<div id="cite-35"></div>
1502
[35] Farmer JR, Martinelli L and Jameson A. A fast multigrid method for solving incompressible hydrodynamic problems with free-surfaces. ''AIAA J.'' 1993; 32 (6):1175&#8211;1182.
1503
1504
<div id="cite-36"></div>
1505
[36] García J, Oñate E, Sierra H, Sacco C and Idelsohn SR. A stabilized numerical method for analysis of ship hydrodynamics. ''ECCOMAS CFD98'', Papaliou K ''et al.'' (Eds), J. Wiley, 1998.
1506
1507
<div id="cite-37"></div>
1508
[37] García J. A finite element method for analysis of naval structures (in Spanish). ''Ph.D. Thesis'', Univ. Politecnica de Catalunya, Barcelona, Spain, December, 1999.
1509
1510
<div id="cite-38"></div>
1511
[38] García J and Oñate E. An unstructured finite element solver for ship hydrodynamic problems. ''J. Appl. Mech.'' 2003; 70:18&#8211;26.
1512
1513
<div id="cite-39"></div>
1514
[39] García J, Luco-Salman R, Salas M, López-Rodríguez M and Oñate E. An advanced finite element method for fluid-dynamic analysis of America's Cup boat. ''High Performance Yatch Design Conference'', Auckland, 4&#8211;6, December, 2002.
1515
1516
<div id="cite-40"></div>
1517
[40] Hansbo P and Szepessy A. A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations. ''Comput. Methods Appl. Mech. Engrg.'' 1990; 84:175&#8211;192.
1518
1519
<div id="cite-41"></div>
1520
[41] Hino T, Martinelli L and Jameson A. A finite volumen method with unstructured grid for free-surface flow. In ''Proc. of the 6th Int. Conf.Num. Ship Hydrodynamics'', Iowa City, Iowa, 1993, 173&#8211;194.
1521
1522
<div id="cite-42"></div>
1523
[42] Hirsch C. ''Numerical computation of internal and external flow'', J. Wiley, Vol. 1 1988, Vol. 2, 1990.
1524
1525
<div id="cite-43"></div>
1526
[43] Hirt CW and Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. ''J. Comput. Physics'' 1981; 39:201&#8211;225.
1527
1528
<div id="cite-44"></div>
1529
[44] Hughes TJR. Multiscale phenomena: Green functions,  subgrid scale models,  bubbles and the origins of stabilized methods.  ''Comput. Methods Appl. Mech. Engrg'' 1995; 127:387&#8211;401.
1530
1531
<div id="cite-45"></div>
1532
[45]  Hughes TJR and Brooks, AN. A multi-dimensional upwind scheme with no crosswind diffusion. ''Finite Element Methods for Convection Dominated Flows'' 1979; AMD-Vol. 34, ASME, New York.
1533
1534
<div id="cite-46"></div>
1535
[46]  Hughes TJR and Tezduyar, TE. Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. ''Computer Methods in Applied Mechanics and Enginerring'' 1984; 45:217&#8211;284.
1536
1537
<div id="cite-47"></div>
1538
[47] Hughes TJR, Franca LP and Balestra M. A new finite element formulation for computational fluid dynamics. V Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accomodating equal-order interpolations. ''Comput. Methods Appl. Mech. Engrg.'' 1986; 59:85&#8211;89.
1539
1540
<div id="cite-48"></div>
1541
[48] Hughes TJR and Mallet M. A new finite element formulations  for computational fluid dynamics: III. The generalized streamline operator  for multidimensional advective-diffusive systems.   ''Comput Methods Appl.  Mech. Engrg.'' 1986; 58:305&#8211;328.
1542
1543
<div id="cite-49"></div>
1544
[49] Hughes TJR and Mallet M. A new finite element formulations for computational fluid dynamics: IV. A discontinuity capturing operator for multidimensional advective-diffusive system. ''Comput. Methods Appl. Mech. Engrg.'' 1986; 58:329&#8211;336.
1545
1546
<div id="cite-50"></div>
1547
[50] Hughes TJR, Franca LP and Hulbert GM. A new finite  element formulation for computational fluid dynamics: VIII. The  Galerkin/least-squares method for advective-diffusive equations. '' Comput. Methods Appl. Mech. Engrg.'' 1989; 73:173&#8211;189.
1548
1549
<div id="cite-51"></div>
1550
[51] Idelsohn SR, Storti M and Nigro N. Stability analysis of mixed finite element formulation with special mention to stabilized equal-order interpolations. ''Int. J. for Num. Meth. in Fluids'' 1995; 20:1003-1022.
1551
1552
<div id="cite-52"></div>
1553
[52] Idelsohn SR, Oñate E and Sacco C. Finite element solution of free-surface ship-wave problem. ''Int. J. Num. Meth. Engng.'' 1999; 45:503&#8211;508.
1554
1555
<div id="cite-53"></div>
1556
[53] Idelsohn SR, Oñate E, Del Pin F and Calvo N. Lagrangian formulation: the only way to solve some free-surface fluid mechanics problems. ''Fith World Congress on Computational Mechanics'', Mang HA, Rammerstorfer FG and Eberhardsteiner J. (eds), July 7&#8211;12, Viena, Austria, 2002, Web: wccm.tuwien.ac.at.
1557
1558
<div id="cite-54"></div>
1559
[54] Idelsohn SR, Oñate E and Del Pin F. A Lagrangian meshless finite element method applied to fluid-structure interaction problems. ''Computer and Structures'' 2003; 81:655&#8211;671.
1560
1561
<div id="cite-55"></div>
1562
[55] Idelsohn SR, Oñate E, Calvo N and Del Pin F. The meshless finite element method. ''Int. J. Num. Meth. Engng'' 2003; 58(6):893&#8211;912.
1563
1564
<div id="cite-56"></div>
1565
[56] Idelsohn SR, Calvo N and Oñate E. Polyhedrization of an arbitrary point set. ''Comput. Method Appl. Mech. Engng.'' 2003; 192(22&#8211;24):2649&#8211;2668.
1566
1567
<div id="cite-57"></div>
1568
[57] Janson C and Larsson L. A method for the optimization of ship hulls from a resistance point of view. ''Proc. of the 21th Symp. on Naval Hidrodynamics'', Trondheim, Norway, 1996.
1569
1570
<div id="cite-58"></div>
1571
[58] Jenson G and Soding H. Ship wave resistance computation. ''Finite Approximations in Fluid Mechanics'' 1989; II, Vol.25.
1572
1573
<div id="cite-59"></div>
1574
[59] Kim YH and Lucas T. Nonlinear ship waves. ''Proc. 18th Symp. on Naval Hidrodynamics'', MI, USA, 1990.
1575
1576
<div id="cite-60"></div>
1577
[60] KRISO (Korea Research Institute of Ships and Ocean Engineering).http://www.iihr.uiowa.edu/gothenburg2000/KVLCC/tanker.html.
1578
1579
<div id="cite-61"></div>
1580
[61] Larsson L. Procedings of the ''1980 SSPA-ITTC Workshop on Ship Boundary Layers''. SSPA Publication No. 90, 1981.
1581
1582
<div id="cite-62"></div>
1583
[62] Larsson L, Regnströn B, Broberg L, Li DQ and Janson CE. Failures, fantasies and feats in the theoretical/numerical prediction of ship performance. ''22d Symposium on Naval Hydrodynamics'', Washington DC, 10&#8211;14, August, 1998.
1584
1585
<div id="cite-63"></div>
1586
[63] Löhner R, Morgan K and Zienkiewicz OC. The solution of non-linear hyperbolic equation systems by the finite element method. ''Int. J. Num. Meth. in Fluids'' 1984; 4:1043.
1587
1588
<div id="cite-64"></div>
1589
[64] Löhner R, Yang C and Oñate E. Viscous free surface hydrodynamics using unstructured grids. ''22nd Simposium on Naval Hydrodynamics'', Washington CD, September 1998.
1590
1591
<div id="cite-65"></div>
1592
[65] Löhner R, Yang C, Oñate E and  Idelsohn SR. An unstructured grid-based parallel free-surface solver. ''Appl. Num. Math.'' 1999;  31:271&#8211;293.
1593
1594
<div id="cite-66"></div>
1595
[66] Luo H, Baum JD and Löhner R. A finite volume scheme for hydrodynamic free boundary problems on unstructured grids. ''AIAA''-95-0668, 1995.
1596
1597
<div id="cite-67"></div>
1598
[67] Miyata H. Time-marching CFD simulation for moving boundary problems. In ''Proc. of the 21st Symp. on Naval Hydrodynamics'', Trondheim, Norway, 1996, 1&#8211;21.
1599
1600
Nakos DE and Sclavounos PD. On steady and unsteady ship wave patterns. ''J. of Fluid Mechanics'' 1990; 215:256&#8211;288.
1601
1602
<div id="cite-68"></div>
1603
[68] Newman JN. Linearized wave resistance theory. ''Int. Seminar on Wave Resistance'', Tokyo/Osaka, J. Soc. Naval Architects Japan, 1976.
1604
1605
<div id="cite-69"></div>
1606
[69] Noblesse F and McCarthy JH (eds). ''Proceedings of the Second DTNSRDC Workshop on Ship Wave-Resistance Computations'', Bethesda, MD, USA, 1983.
1607
1608
<div id="cite-70"></div>
1609
[70] Oñate E. Derivation of stabilized equations for  advective-diffusive transport and fluid flow problems. ''Comput. Methods Appl. Mech. Engrg.'' 1998;  151 (1-2):233&#8211;267.
1610
1611
<div id="cite-71"></div>
1612
[71] Oñate E. A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. ''Comput. Methods Appl. Mech. Engrg.'' 2000; 182 (1&#8211;2):355&#8211;370.
1613
1614
<div id="cite-72"></div>
1615
[72] Oñate E. Possibilities of finite calculus in computational mechanics. To be published in ''Int. J. Num. Meth. Engng'' 2004; 59(54).
1616
1617
<div id="cite-73"></div>
1618
[73] Oñate E and Idelsohn SR. A mesh free finite point method for advective-diffusive transport and fluid flow problems. ''Computational Mechanics'' 1988; 21:283&#8211;292.
1619
1620
<div id="cite-74"></div>
1621
[74] Oñate E, García J and Idelsohn SR.  Computation  of the stabilization  parameter for the finite  element solution of advective-diffusive problems.  ''Int. J. Num. Meth. Fluids'' 1997; 25:1385&#8211;1407.
1622
1623
<div id="cite-75"></div>
1624
[75] Oñate E, García J and Idelsohn SR. An alpha-adaptive  approach for stabilized finite element solution of advective-diffusive  problems with sharp gradients. ''New Adv. in Adaptive  Comput. Methods in Mech.'', Ladeveze P and Oden JT (eds),  Elsevier, 1998.
1625
1626
<div id="cite-76"></div>
1627
[76] Oñate E and Manzan M. A general procedure for deriving stabilized space-time finite element methods for advective-diffusive problems. ''Int. J. Num. Meth. Fluids'' 1999; 31:203&#8211;221.
1628
1629
<div id="cite-77"></div>
1630
[77] Oñate E and Manzan M. Stabilization techniques for finite element analysis of convection diffusion problems. In ''Computational Analysis of Heat Transfer'', Comini G and Sunden B (eds), WIT Press: Southampton, 2000.
1631
1632
<div id="cite-78"></div>
1633
[78] Oñate E and García J. A finite element method for  fluid-structure interaction with surface waves using a finite calculus formulation. ''Comput. Methods Appl. Mech. Engrg.'' 2001;  191:635&#8211;660.
1634
1635
<div id="cite-79"></div>
1636
[79] Oñate E, García J, Bugeda G and Idelsohn SR. A general stabilized formulation for incompressible fluid flow using finite calculus and the finite element method. In ''Towards a New Fluid Dynamics with its Challenges in Aeronautics'', Periaux J, Chamption D, Pironneau O and Thomas Ph. (eds), CIMNE, Barcelona, Spain 2002.
1637
1638
<div id="cite-80"></div>
1639
[80] Oñate E, Idelsohn SR and del Pin, F. Fully Lagrangian formulation for fluid-structure interaction problems using the finite element method and finite calculus. ''Computational Mechanics - Theory and Practice'', K.M. Mathisen, T. Kvamsdal and K.M. Okstad (eds.), CIMNE, Barcelona, Spain 2003.
1640
1641
<div id="cite-81"></div>
1642
[81] Oñate E, Idelsohn SR, del Pin F, Calvo N. and Aubry R. The particle finite element method. An overview. To be published in ''Int. J. Computational Methods'', 2004.
1643
1644
<div id="cite-82"></div>
1645
[82] Peraire J, Morgan K and Peiro J. The simulation of 3D incompressible flows using unstructured grids. In ''Frontiers of Computational Fluid Dynamics'', Caughey DA and Hafez MM. (eds), Chapter 16, J. Wiley, 1994.
1646
1647
<div id="cite-83"></div>
1648
[83] Pironneau O. On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. ''Numer. Math.'' 1982; 38:309.
1649
1650
<div id="cite-84"></div>
1651
[84] Raven H. A solution method for the nonlinear ship resistance problem. ''Doctoral Thesis'', Maritime Research Institute, Netherlands, 1996.
1652
1653
<div id="cite-85"></div>
1654
[85] Reed AM,  Telste JG, Scragg CA and Liepmann D. Analysis of transon stern flows. ''Proc. 17th Symp. on Naval Hidrodynamics'', The Hague, The Netherlands, 1990.
1655
1656
<div id="cite-86"></div>
1657
[86]  Sheng C,  Taylor LK and Whitfield DL. Implicit lower-upper/approximate-factorization schemes for incompressible flows. ''Journal of Computational Physics'' 1996; 128 (1):32&#8211;42.
1658
1659
<div id="cite-87"></div>
1660
[87] Soding H. Advances in panel methods. ''Proc. of the 21th Symp. on Naval Hidrodynamics'', Trondheim, Norway, 1996.
1661
1662
<div id="cite-88"></div>
1663
[88] Storti M, Nigro N and Idelsohn SR. Steady state incompressible flows using explicit schemes with an optimal local preconditioning. ''Comput. Meth. Appl. Mech. and Engrg.'' 1995; 124:231&#8211;252.
1664
1665
<div id="cite-89"></div>
1666
[89] Storti M, Nigro N, Idelsohn SR. equal-order interpolations. A unified approach to stabilize the incompressible and convective effects.  ''Comput. Meth. Appl. Mech. and Engrg.'' 1997; 143:317&#8211;331.
1667
1668
<div id="cite-90"></div>
1669
[90]  Storti M, d'Elia J and Idelsohn SR.  Algebraic discrete non-local (DNL) absorbing boundary condition for the ship wave resistance problem. ''J. Computational Physics'' 1998a; 146(2): 570&#8211;602.
1670
1671
<div id="cite-91"></div>
1672
[91]  Storti M, d'Elia J and Idelsohn SR.  Computing ship wave resistance form wave amplitude with the DNL absorbing boundary condition. ''Comun. in Numer. Meth. in Engng'' 1998b; 14:997&#8211;1012.
1673
1674
<div id="cite-92"></div>
1675
[92] ''Tdyn. A finite element code for fluid-dynamic analysis'', COMPASS Ingeniería y Sistemas SA,  Barcelona, Spain, <u>www.compassis.com</u>, (2004).
1676
1677
<div id="cite-93"></div>
1678
[93] Tajima M and Yabe T. Simulation on slamming of a vessel by CIP method. ''J. Phys. Soc. Japan'' 1999; 68:2576&#8211;2584.
1679
1680
<div id="cite-94"></div>
1681
[94] Tezduyar TE. Stabilized finite element formulations for incompressible flow computations. ''Advances in Applied Mechanics'' 1991; 28:1&#8211;44.
1682
1683
<div id="cite-95"></div>
1684
[95] Tezduyar TE. Finite element methods for flow problems with moving boundaries and interfaces. ''Arch. Comput. Meth. Engng.'' 2001;  8:83&#8211;130.
1685
1686
<div id="cite-96"></div>
1687
[96] Tezduyar TE. Adaptive determination of the finite element stabilization parameters. ''Proceeding of the ECCOMAS Computational Fluid Dynamics Conference 2001'', Swansea, Wales, United Kingdom, CD-ROM (2001).
1688
1689
<div id="cite-97"></div>
1690
[97] Tezduyar TE and Hughes, TJR. Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations. AIAA Paper 83-0125, Proceedings of AIAA 21st Aerospace Sciences Metting, Reno, Nevada, 1983.
1691
1692
<div id="cite-98"></div>
1693
[98] Tezduyar TE and Park YJ. Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction problems. ''Comput. Meth. Appl. Mech. and Engrg.'' 1986; 59:307&#8211;325.
1694
1695
<div id="cite-99"></div>
1696
[99] Tezduyar TE, Mittal S,  Ray SE and Shih R. Incompressible flow computations with stabilized bilinear and linear equal-order interpolation velocity&#8211;pressure elements. ''Comput. Methods Appl. Mech. Engrg.'' 1992; 95:221&#8211;242.
1697
1698
<div id="cite-100"></div>
1699
[100] Tezduyar TE, Behr M and Liou J. A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary tests. ''Comput. Methods in Appl. Mech. and Engrg.'' 1992;  94:339&#8211;351.
1700
1701
<div id="cite-101"></div>
1702
[101] Tezduyar TE, Behr M, Mittal S and Johnson AA. Computation of unsteady incompressible flows with the stabilized finite element methods. Space-time formulations, iterative strategies and massively parallel implementations. ''New Methods in Transient Analysis'' (eds. P. Smolinki, W.K. Liu, G. Hulbert and K. Tamma), AMD-Vol. 143, ASME, New York (1992) 7&#8211;24.
1703
1704
<div id="cite-102"></div>
1705
[102] Tezduyar TE, Aliabadi S and Behr M. Parallel finite element computing methods for unsteady flows with interfaces. ''Computational Fluid Dynamics Review 1998'' (eds. M. Hafez and K. Oshima), World Scientific (1998) 643&#8211;667.
1706
1707
<div id="cite-103"></div>
1708
[103]  Wehausen JV. The wave resistance of ships. ''Advances in Applied Mechanics'', 1973.
1709
1710
<div id="cite-104"></div>
1711
[104]  Wigley. Comparative experiment on Wigley parabolic models in Japan. 17th ITTC Resistance Committee Report, 2nd ed., 1983.
1712
1713
<div id="cite-105"></div>
1714
[105] Wilcox DC. ''Turbulence modeling for CFD''. DCW Industries Inc., 1994.
1715
1716
<div id="cite-106"></div>
1717
[106] Xia F. Numerical calculation of ship flows with special emphasis on the free-surface potential flow. ''Doctoral Thesis'', Chalmers University of Technology, Sweden, 1986.
1718
1719
<div id="cite-107"></div>
1720
[107]  Zienkiewicz  OC and  Taylor RC. ''The finite element method'', 5th Edition, 3 Volumes, Butterworth&#8211;Heinemann, 2000.
1721
1722
<div id="cite-108"></div>
1723
[108] Zienkiewicz OC and  Codina R. A general algorithm for  compressible and incompressible flow. Part I: The split characteristic  based scheme. ''Int. J. Num. Meth. in Fluids'' 1995; 20:869&#8211;85.
1724
1725
===LIST OF FIGURES===
1726
1727
'''Figure '''1. Equilibrium of fluxes in a  balance domain of finite size
1728
1729
'''Figure '''2. Reference surface for the wave height <math display="inline">\beta </math>
1730
1731
'''Figure '''3. Definition of free-surface parameters
1732
1733
'''Figure '''4. Changes on the fluid interface in a floating body
1734
1735
'''Figure '''5. Submerged NACA0012 profile. a) Detail of the mesh of 70000 linear tetrahedra chosen. b) Pressure contours. c) Stationary wave profile
1736
1737
'''Figure '''6. Wigley hull. a) Pressure distribution and mesh deformation of the wigley hull (free model). b) Numerical and experimental body wave profiles.  c) free-surface contours for the truly free ship motion
1738
1739
'''Figure '''7. KVLCC2 model. Geometrical definition based on NURBS surfaces and surface mesh used in the analysis
1740
1741
'''Figure '''8. KVLCC2 model. Wave profile on the hull. Thick line shows numerical results
1742
1743
'''Figure '''9. KVLCC2 model. Wave profile on a cut at y/L=0.0964. Thick line shows numerical results
1744
1745
'''Figure '''10. KVLCC2 model. Map of the X component of the velocity on a plane at 2.71 m from the orthogonal aft. Experimental data shown in the right
1746
1747
'''Figure '''11. KVLCC2 model. Map of the eddy kinetic energy (<math display="inline">K</math>) on a plane at 2.71 m from the orthogonal aft. Experimental data shown in the right
1748
1749
'''Figure '''12. NURBS-based geometry used in the analysis of the Rioja de España America Cup boat
1750
1751
'''Figure '''13. Detail of the final (boundary) mesh used in the E0D0 case. The mesh has been adapted taking into account sinkage, trim and free-surface deformation
1752
1753
'''Figure '''14. Detail of the mesh used in the analysis of the E0D0 case, around keel-bulb union
1754
1755
'''Figure '''15. Wave elevation profile for 10kn (left: E0D0, right: E15D2)
1756
1757
'''Figure '''16. E0D0 8kn. Pressure contours on bulb
1758
1759
'''Figure '''17. E25D2 8kn. Pressure contours on bulb
1760
1761
'''Figure '''18. E15D2 9kn Wave map
1762
1763
'''Figure '''19. E25D2 9kn Wave map
1764
1765
'''Figure '''20. E15D2 7.5 kn. Pressure map on appendages and streamlines. Perspective view
1766
1767
'''Figure '''21. E15D4 7.5 kn. Velocity modulus contours. Perspective view
1768
1769
'''Figure '''22. E25D2 7.5 kn. Pressure contours on appendages and cuts. Perspective view
1770
1771
'''Figure '''23. E0D0. Resistance graph. Comparison with results extrapolated from experimental data
1772
1773
'''Figure '''24. E15D4. Resistance graph. Comparison with results extrapolated from experimental data
1774
1775
'''Figure '''25. American Cup <math display="inline">Bravo ~Espa\tilde{n}a</math> racing sail boat. a) Mesh used in the analysis. b) Velocity contours
1776
1777
'''Figure '''26. <math display="inline">Bravo ~Espa\tilde{n}a</math>. Streamlines
1778
1779
'''Figure '''27. <math display="inline">Bravo~Espa\tilde{n}a</math>. Resistance test. Comparison of numerical results with experimental data
1780
1781
'''Figure '''28. Fixed ship hit by incoming  wave
1782
1783
'''Figure '''29. Moving ship with fixed velocity
1784
1785
'''Figure '''30. Rotating water mill
1786
1787
'''Figure '''31. Floating wood piece hit by a wave
1788
1789
'''Figure '''32. Motion of a rigid ship hit by an income wave. The ship is modelled as a rigid solid restrained to move in the vertical direction
1790
1791
'''Figure '''33. Ship with stabilizers hit by a lateral wave
1792
1793
'''Figure '''34. Tank ship carrying an internal liquid hit by wave. Ship and fluids motion  at different time steps
1794
1795
'''Figure '''35. Tank ship under lateral wave. Pressure distribution at two time steps.
1796
1797
'''Figure '''36. Solid cube falling into a recipient with water. The cube is modelled as a very viscous fluid
1798
1799
'''Figure '''37. Cube falling into a recipient with water. The cube is modelled as a rigid solid. Motion of the cube and free surface positions at different time steps
1800
1801
'''Figure '''38. Cube falling in a water recipient. The cube is modeled as a  rigid solid. The finite element meshes generated at the selected instants are shown
1802
1803
<div id='img-1'></div>
1804
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1805
|-
1806
|[[Image:Draft_Samper_876641692-majesus2.png|516px|Equilibrium of fluxes in a  balance domain of finite size]]
1807
|- style="text-align: center; font-size: 75%;"
1808
| colspan="1" | '''Figure 1:''' Equilibrium of fluxes in a  balance domain of finite size
1809
|}
1810
1811
<div id='img-2'></div>
1812
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1813
|-
1814
|[[Image:Draft_Samper_876641692-Fig2con216.png|570px|Reference surface for the wave height β]]
1815
|- style="text-align: center; font-size: 75%;"
1816
| colspan="1" | '''Figure 2:''' Reference surface for the wave height <math>\beta </math>
1817
|}
1818
1819
<div id='img-3'></div>
1820
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1821
|-
1822
|[[Image:Draft_Samper_876641692-Fig6con215.png|570px|Definition of free-surface parameters]]
1823
|- style="text-align: center; font-size: 75%;"
1824
| colspan="1" | '''Figure 3:''' Definition of free-surface parameters
1825
|}
1826
1827
<div id='img-4'></div>
1828
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1829
|-
1830
|[[Image:Draft_Samper_876641692-fig2.png|570px|Changes on the fluid interface in a floating body]]
1831
|- style="text-align: center; font-size: 75%;"
1832
| colspan="1" | '''Figure 4:''' Changes on the fluid interface in a floating body
1833
|}
1834
1835
<div id='img-5'></div>
1836
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1837
|-
1838
|[[Image:Draft_Samper_876641692-Fig3_1.png|351px|]]
1839
|[[Image:Draft_Samper_876641692-Fig3_2.png|351px|]]
1840
|-
1841
|[[Image:Draft_Samper_876641692-Fig3_3.png|351px|]]
1842
|[[Image:Draft_Samper_876641692-fig3b.png|570px|Submerged NACA0012 profile. a) Detail of the mesh of 70000 linear tetrahedra chosen. b) Pressure contours. c) Stationary wave profile]]
1843
|- style="text-align: center; font-size: 75%;"
1844
| colspan="2" | '''Figure 5:''' Submerged NACA0012 profile. a) Detail of the mesh of 70000 linear tetrahedra chosen. b) Pressure contours. c) Stationary wave profile
1845
|}
1846
1847
<div id='img-6'></div>
1848
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1849
|-
1850
|[[Image:Draft_Samper_876641692-Fig6Hull.png|600px|Wigley hull. a) Pressure distribution and mesh deformation of the wigley hull (free model). b) Numerical and experimental body wave profiles.  c) free-surface contours for the truly free ship motion ]]
1851
|- style="text-align: center; font-size: 75%;"
1852
| colspan="1" | '''Figure 6:''' Wigley hull. a) Pressure distribution and mesh deformation of the wigley hull (free model). b) Numerical and experimental body wave profiles.  c) free-surface contours for the truly free ship motion 
1853
|}
1854
1855
<div id='img-7'></div>
1856
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1857
|-
1858
|[[Image:Draft_Samper_876641692-KCSgeo.png|600px|]]
1859
|[[Image:Draft_Samper_876641692-KCSmesh.png|600px|KVLCC2 model. Geometrical definition based on NURBS surfaces and surface mesh used in the analysis]]
1860
|- style="text-align: center; font-size: 75%;"
1861
| colspan="2" | '''Figure 7:''' KVLCC2 model. Geometrical definition based on NURBS surfaces and surface mesh used in the analysis
1862
|}
1863
1864
<div id='img-8'></div>
1865
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1866
|-
1867
|[[Image:Draft_Samper_876641692-KCSprof1.png|600px|KVLCC2 model. Wave profile on the hull. Thick line shows numerical results]]
1868
|- style="text-align: center; font-size: 75%;"
1869
| colspan="1" | '''Figure 8:''' KVLCC2 model. Wave profile on the hull. Thick line shows numerical results
1870
|}
1871
1872
<div id='img-9'></div>
1873
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1874
|-
1875
|[[Image:Draft_Samper_876641692-KCSprof2.png|600px|KVLCC2 model. Wave profile on a cut at y/L=0.0964. Thick line shows numerical results]]
1876
|- style="text-align: center; font-size: 75%;"
1877
| colspan="1" | '''Figure 9:''' KVLCC2 model. Wave profile on a cut at y/L=0.0964. Thick line shows numerical results
1878
|}
1879
1880
<div id='img-10'></div>
1881
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1882
|-
1883
|[[Image:Draft_Samper_876641692-KCSvelx1.png|600px|KVLCC2 model. Map of the X component of the velocity on a plane at 2.71 m from the orthogonal aft. Experimental data shown in the right]]
1884
|- style="text-align: center; font-size: 75%;"
1885
| colspan="1" | '''Figure 10:''' KVLCC2 model. Map of the X component of the velocity on a plane at 2.71 m from the orthogonal aft. Experimental data shown in the right
1886
|}
1887
1888
<div id='img-11'></div>
1889
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1890
|-
1891
|[[Image:Draft_Samper_876641692-KCSk.png|600px|KVLCC2 model. Map of the eddy kinetic energy (K) on a plane at 2.71 m from the orthogonal aft. Experimental data shown in the right]]
1892
|- style="text-align: center; font-size: 75%;"
1893
| colspan="1" | '''Figure 11:''' KVLCC2 model. Map of the eddy kinetic energy (<math>K</math>) on a plane at 2.71 m from the orthogonal aft. Experimental data shown in the right
1894
|}
1895
1896
<div id='img-12'></div>
1897
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1898
|-
1899
|[[Image:Draft_Samper_876641692-Fig2Rioja.png|351px|NURBS-based geometry used in the analysis of the Rioja de España America Cup boat]]
1900
|- style="text-align: center; font-size: 75%;"
1901
| colspan="1" | '''Figure 12:''' NURBS-based geometry used in the analysis of the Rioja de España America Cup boat
1902
|}
1903
1904
<div id='img-13'></div>
1905
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1906
|-
1907
|[[Image:Draft_Samper_876641692-Fig3Rioja.png|351px|Detail of the final (boundary) mesh used in the E0D0 case. The mesh has been adapted taking into account sinkage, trim and free-surface deformation]]
1908
|- style="text-align: center; font-size: 75%;"
1909
| colspan="1" | '''Figure 13:''' Detail of the final (boundary) mesh used in the E0D0 case. The mesh has been adapted taking into account sinkage, trim and free-surface deformation
1910
|}
1911
1912
<div id='img-14'></div>
1913
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1914
|-
1915
|[[Image:Draft_Samper_876641692-Fig4Rioja.png|351px|Detail of the mesh used in the analysis of the E0D0 case, around keel-bulb union]]
1916
|- style="text-align: center; font-size: 75%;"
1917
| colspan="1" | '''Figure 14:''' Detail of the mesh used in the analysis of the E0D0 case, around keel-bulb union
1918
|}
1919
1920
<div id='img-15'></div>
1921
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1922
|-
1923
|[[Image:Draft_Samper_876641692-Fig6Rioja.png|351px|]]
1924
|[[Image:Draft_Samper_876641692-Fig7Rioja.png|351px|Wave elevation profile for 10kn (left: E0D0, right: E15D2) ]]
1925
|- style="text-align: center; font-size: 75%;"
1926
| colspan="2" | '''Figure 15:''' Wave elevation profile for 10kn (left: E0D0, right: E15D2) 
1927
|}
1928
1929
<div id='img-16'></div>
1930
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1931
|-
1932
|[[Image:Draft_Samper_876641692-Fig10Rioja.png|351px|E0D0 8kn. Pressure contours on bulb]]
1933
|- style="text-align: center; font-size: 75%;"
1934
| colspan="1" | '''Figure 16:''' E0D0 8kn. Pressure contours on bulb
1935
|}
1936
1937
<div id='img-17'></div>
1938
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1939
|-
1940
|[[Image:Draft_Samper_876641692-Fig13Rioja.png|351px|E25D2 8kn. Pressure contours on bulb]]
1941
|- style="text-align: center; font-size: 75%;"
1942
| colspan="1" | '''Figure 17:''' E25D2 8kn. Pressure contours on bulb
1943
|}
1944
1945
<div id='img-18'></div>
1946
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1947
|-
1948
|[[Image:Draft_Samper_876641692-Fig15Rioja.png|351px|E15D2 9kn Wave map]]
1949
|- style="text-align: center; font-size: 75%;"
1950
| colspan="1" | '''Figure 18:''' E15D2 9kn Wave map
1951
|}
1952
1953
<div id='img-19'></div>
1954
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1955
|-
1956
|[[Image:Draft_Samper_876641692-Fig17Rioja.png|351px|E25D2 9kn Wave map]]
1957
|- style="text-align: center; font-size: 75%;"
1958
| colspan="1" | '''Figure 19:''' E25D2 9kn Wave map
1959
|}
1960
1961
<div id='img-20'></div>
1962
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1963
|-
1964
|[[Image:Draft_Samper_876641692-Fig18Rioja.png|351px|E15D2 7.5 kn. Pressure map on appendages and streamlines. Perspective view]]
1965
|- style="text-align: center; font-size: 75%;"
1966
| colspan="1" | '''Figure 20:''' E15D2 7.5 kn. Pressure map on appendages and streamlines. Perspective view
1967
|}
1968

Return to Onate et al 2004h.

Back to Top

Document information

Published on 01/01/2004

DOI: 10.1002/9781119176817
Licence: CC BY-NC-SA license

Document Score

0

Views 44
Recommendations 0

Share this document