You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
==Abstract==
2
3
We present a general formulation for incompressible fluid flow analysis using the finite element method (FEM). The standard Eulerian formulation is described first. The necessary stabilization for dealing with convective effects and the incompressibility condition are introduced via the Finite Calculus (FIC) method.  A simple extension of the fluid flow equations to an arbitrary Lagrangian-Eulerian (ALE) frame adequate for treating fluid-structure interaction problems is briefly presented. A fully Lagrangian formulation called the Particle Finite Element Method (PFEM) is also described. The PFEM is particularly attractive for fluid-structure interaction problems involving large motions of the free surface and breaking waves. Examples of application of the Eulerian, the ALE and the fully lagrangian PFEM formulations are presented.
4
5
'''Keywords''': Stabilized formulation, incompressible fluid, finite calculus, finite element method, particle finite element method, fluid-structure interaction, lagrangian flow.
6
7
==1 INTRODUCTION==
8
9
The development of efficient and robust numerical methods for analysis of incompressible flows has been a subject of intensive research in the last decades. Much effort has been spent in developing the so called stabilized numerical methods overcoming the two main sources of instability in incompressible flow analysis, namely those originated by the high values of the convective terms and those induced by the difficulty in satisfying the incompressibility condition.
10
11
The solution of above problems in the context of the finite element method (FEM) has been attempted in a number of ways <span id='citeF-1'></span>[[#cite-1|[1]]]. The underdiffusive character of the Galerkin FEM for high convection flows (which incidentaly also occurs for the central finite difference (FD) and finite volume (FV) methods <span id='citeF-2'></span>[[#cite-2|[2]]]) has been corrected by adding some kind of artificial viscosity terms to the standard Galerkin equations.
12
13
A popular way to overcome the problems with the incompressibility constraint is by introducing a pseudo-compressibility in the flow and using implicit and explicit algorithms developed for this kind of problems such as artificial compressibility schemes <span id='citeF-4'></span>[[#cite-4|[4]]] and preconditioning techniques <span id='citeF-7'></span>[[#cite-7|[7]]]. Many FEM schemes for fluid flow analysis with good stabilization properties for the convective and incompressibility terms  are based in Petrov-Galerkin (PG) techniques. The background of PG methods are the non-centred (upwind) schemes for computing the first derivatives of the convective operator in FD and FV methods <span id='citeF-2'></span>[[#cite-2|[2]]]. A general class of Galerkin FEM has been recently developed where the standard Galerkin variational form of the momentum and mass balance equations is extended with adequate residual-based terms in order to achieve a stabilized numerical scheme. Among the many finite element methods of this kind  we can name the Streamline Upwind Petrov Galerkin (SUPG) method <span id='citeF-1'></span>[[#cite-1|[1]]], the Galerkin Least Square (GLS) method <span id='citeF-19'></span>[[#cite-19|[19]]], the Taylor-Galerkin method <span id='citeF-21'></span>[[#cite-21|[21]]], the Characteristic Galerkin method <span id='citeF-22'></span>[[#cite-22|[22]]] and its variant the Characteristic Based Split (CBS) method <span id='citeF-25'></span>[[#cite-25|[25]]], the pressure gradient operator method <span id='citeF-27'></span>[[#cite-27|[27]]] and the Subgrid Scale (SS) method <span id='citeF-28'></span>[[#cite-28|[28]]]. A good review of these methods can be found in <span id='citeF-31'></span>[[#cite-31|[31]]].
14
15
In this paper a stabilized finite element formulation for incompressible flows is derived in a different manner. The starting point is the modified governing differential equations of the fluid flow problem formulated via a finite calculus (FIC) approach <span id='citeF-32'></span>[[#cite-32|[32]]]. The FIC method is based in invoking the balance of fluxes in a fluid domain of finite size. This introduces naturally additional terms in the classical differential equations of momentum and mass balance of infinitesimal fluid mechanics which are a function of the balance domain dimensions. The new terms in the modified governing equations provide the necessary stabilization to the discrete equations obtained via the standard Galerkin FEM. The resulting stabilized formulation overcomes the problems due to the convective and incompressibility terms and it allows  the use of low order finite elements (such as linear triangles and tetrahedra) with equal order approximations for the velocity and pressure variables <span id='citeF-33'></span>[[#cite-33|33]]. Application of the FIC approach to the solution of fluid flow problems using a meshless methods are presented in <span id='citeF-42'></span>[[#cite-42|[42]]].
16
17
The layout of the paper is the following. In the next section the main concepts of the FIC approach are introduced via a simple 1D convection-diffusion model problem. Then the basic FIC equations for incompressible flow problems formulated in an Eulerian frame are presented. The finite element discretization is introduced and the resulting matrix equations are detailed. A fractional step scheme and a predictor-corrector scheme for the transient solution are presented.
18
19
The Eulerian formulation is extended to account for free surface wave effects by using an arbitrary Eulerian-Lagrangian (ALE) description and introducing the free surface boundary conditions. The numerical treatment of the free surface equation using the FIC method is presented. The analysis of fluid-structure interaction problems involving the movement of floating or submerged solids in a fluid is also discussed. These problems require to follow the displacement of the mesh nodes accordingly to  the motion of the structure or the free surface and here a simple and effective algorithm for updating the mesh nodes is described.
20
21
In the last part of the paper  the fully Lagrangian formulation for fluid flow analysis is presented as a particular case of the ALE form. More specifically, in this paper we describe an innovative Lagrangian formulation  to solve problems involving the interaction between fluids and solids in a unified manner. The procedure, called the ''Particle Finite Element Method'' (PFEM) <span id='citeF-44'></span>[[#cite-44|[44]]], treats the mesh nodes in the fluid and solid domains as dimensionless particles which can freely move an even separate from the main fluid domain representing, for instance, the effect of water drops. A finite element mesh connects the nodes defining the discretized domain where the governing equations are solved in the standard FEM fashion. The PFEM  has many advantages for tracking the displacement of fluid particles in flows where large motions of the fluid surface occur such in the case of breaking waves, splashing of water, filling of moulds, etc.
22
23
The main  advantage of the Lagrangian flow formulation is that the convective terms do not enter into the fluid equations. The difficulty is however transferred to the problem of adequately (and efficiently) moving the mesh nodes.  We use a  mesh regeneration procedure blending elements of different shapes based on an extended Delaunay tesselation <span id='citeF-49'></span>[[#cite-49|[49]]].
24
25
The examples show the efficiency of the Eulerian, ALE and PFEM formulations to solve classical fluid flow problems, as well as more complex fluid-structure interaction problems involving contact with moving solids, waves around ships and large motions of the free surface, among others.
26
27
==2 THE FINITE CALCULUS METHOD==
28
29
We will consider a convection-diffusion problem in a 1D domain <math display="inline">\Omega </math> of length <math display="inline">L</math>. The equation of balance of fluxes in a subdomain of size <math display="inline">d</math> belonging to <math display="inline">\Omega </math> (Figure 1) is written as
30
31
{| class="formulaSCP" style="width: 100%; text-align: left;" 
32
|-
33
| 
34
{| style="text-align: left; margin:auto;width: 100%;" 
35
|-
36
| style="text-align: center;" | <math>q_A - q_B=0 </math>
37
|}
38
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
39
|}
40
41
where <math display="inline">q_A</math> and <math display="inline">q_B</math> are the incoming and outgoing fluxes at points <math display="inline">A</math> and <math display="inline">B</math>, respectively. The flux <math display="inline">q</math> includes both convective and diffusive terms; i.e. <math display="inline">q=u\phi - k{d\phi \over dx}</math>, where <math display="inline">\phi </math> is the transported variable, <math display="inline">u</math> is the velocity and <math display="inline">k</math> is the diffusitivity of the material.
42
43
<div id='img-1'></div>
44
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
45
|-
46
|[[Image:Draft_Samper_881612373-majesus2.png|316px|Equilibrium of fluxes in a  balance domain of finite size]]
47
|- style="text-align: center; font-size: 75%;"
48
| colspan="1" | '''Figure 1:''' Equilibrium of fluxes in a  balance domain of finite size
49
|}
50
51
52
Let us express now the fluxes <math display="inline">q_A</math> and <math display="inline">q_B</math> in terms of the flux at an arbitrary point <math display="inline">C</math> within the balance domain (Figure 1). Expanding <math display="inline">q_A</math> and <math display="inline">q_B</math> in Taylor series around point <math display="inline">C</math> up to second order terms gives after simplification
53
54
{| class="formulaSCP" style="width: 100%; text-align: left;" 
55
|-
56
| 
57
{| style="text-align: left; margin:auto;width: 100%;" 
58
|-
59
| style="text-align: center;" | <math>\frac{dq}{dx}-\underline{\frac{h}{2} \frac{d^2q}{dx^2}}\frac{h}{2} \frac{d^2q}{dx^2}=0 </math>
60
|}
61
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
62
|}
63
64
where <math display="inline">h=d_1-d_2</math> and all the derivatives are computed at point <math display="inline">C</math>.
65
66
Standard calculus theory assumes  that the domain <math display="inline">d</math> is of infinitesimal size and the resulting balance equation is simply <math display="inline">{dq\over dx}=0</math>. The new balance equation (2) derived assuming that the balance domain has a finite size, incorporates now the underlined term which introduces the ''characteristic length'' <math display="inline">h</math>. Distance <math display="inline">h</math> can be interpreted as a free parameter depending on the location of point <math display="inline">C</math> (note that <math display="inline">-d\le h \le d</math>). Eq.(2) is the starting point to derive numerical schemes with enhanced stability properties simply by computing the characteristic length parameter from an adequate “optimality” rule.
67
68
Consider, for instance, the modified equation (2) applied to the convection-diffusion problem. Neglecting third order derivatives of <math display="inline">\phi </math>, eq.(3) can be written in an explicit form as
69
70
{| class="formulaSCP" style="width: 100%; text-align: left;" 
71
|-
72
| 
73
{| style="text-align: left; margin:auto;width: 100%;" 
74
|-
75
| style="text-align: center;" | <math>-u \frac{d\phi }{dx}+\left(k+\frac{u h}{2}\right)\frac{d^2\phi }{dx^2}=0 </math>
76
|}
77
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
78
|}
79
80
We see  that the modified equation via the FIC method introduces ''naturally'' an additional diffusion term into the standard convection-diffusion equation. This is the basis of the popular “artificial diffusion” procedure [1,2,8,32, 36]. In the discretized problem, the characteristic length <math display="inline">h</math> is typically expressed as a function of the cell or element dimensions. The critical and optimal values of <math display="inline">h</math> for each cell or element can be computed from numerical stability conditions such as obtaining a physically meaningful solution, or even obtaining “exact” nodal values <span id='citeF-32'></span>[[#cite-32|[32]]].
81
82
Equation (3) can be extended to account for source effects. The FIC  equation can be then written in compact form as
83
84
{| class="formulaSCP" style="width: 100%; text-align: left;" 
85
|-
86
| 
87
{| style="text-align: left; margin:auto;width: 100%;" 
88
|-
89
| style="text-align: center;" | <math>r- \underline{\frac{h}{2} \frac{dr}{dx}}\frac{h}{2} \frac{dr}{dx}=0 </math>
90
|}
91
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
92
|}
93
94
with
95
96
{| class="formulaSCP" style="width: 100%; text-align: left;" 
97
|-
98
| 
99
{| style="text-align: left; margin:auto;width: 100%;" 
100
|-
101
| style="text-align: center;" | <math>r = -u \frac{d\phi }{dx}+ \frac{d}{dx}\left(k \frac{d\phi }{dx}\right)+ Q </math>
102
|}
103
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
104
|}
105
106
where <math display="inline">Q</math> is the external source. A consistent  “finite” form of the Neumann boundary condition  can be  obtained by invoking balance of fluxes in a domain of finite size next to the boundary <math display="inline">\Gamma _q</math> where the external (diffusive) flux is prescribed to a value <math display="inline">q_p</math>. The modified Neumann boundary condition in the FIC method is <span id='citeF-32'></span>[[#cite-32|[32]]]
107
108
{| class="formulaSCP" style="width: 100%; text-align: left;" 
109
|-
110
| 
111
{| style="text-align: left; margin:auto;width: 100%;" 
112
|-
113
| style="text-align: center;" | <math>k \frac{d\phi }{dx}+ q_p- \underline{\frac{h}{2}r}\frac{h}{2}r=0 \quad \hbox{at } \, \Gamma _q </math>
114
|}
115
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
116
|}
117
118
The definition of the problem is completed with the standard Dirichlet condition prescribing the value of <math display="inline">\phi </math> at the boundary <math display="inline">\Gamma _\phi </math>.
119
120
The underlined terms in Eqs.(4) and (6) introduce the necessary stabilization in the discrete solution of the problem using whatever numerical scheme. For details see <span id='citeF-32'></span>[[#cite-32|[32]]].
121
122
The time dimension can be  introduced in the FIC method by considering the balance equation in a space-time slab domain <span id='citeF-32'></span>[[#cite-32|[32]]].
123
124
The starting point in the next section are the FIC equations for a viscous incompressible fluid accounting for space stabilization terms only.
125
126
==3 GENERAL FIC EQUATIONS FOR VISCOUS INCOMPRESSIBLE FLOW==
127
128
The FIC governing equations for a viscous incompressible fluid can be written in an Eulerian frame of reference as
129
130
'''Momentum'''
131
132
{| class="formulaSCP" style="width: 100%; text-align: left;" 
133
|-
134
| 
135
{| style="text-align: left; margin:auto;width: 100%;" 
136
|-
137
| style="text-align: center;" | <math>r_{m_i} - \underline{{1\over 2} h_j{\partial r_{m_i} \over \partial x_j}}{1\over 2} h_j{\partial r_{m_i} \over \partial x_j}=0 \qquad \hbox{in }\Omega  </math>
138
|}
139
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
140
|}
141
142
'''Mass balance'''
143
144
{| class="formulaSCP" style="width: 100%; text-align: left;" 
145
|-
146
| 
147
{| style="text-align: left; margin:auto;width: 100%;" 
148
|-
149
| style="text-align: center;" | <math>r_d - \underline{{1\over 2} h_j {\partial r_d \over \partial x_j}}{1\over 2} h_j {\partial r_d \over \partial x_j}=0 \qquad \hbox{in }\Omega  </math>
150
|}
151
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
152
|}
153
154
where
155
156
{| class="formulaSCP" style="width: 100%; text-align: left;" 
157
|-
158
| 
159
{| style="text-align: left; margin:auto;width: 100%;" 
160
|-
161
| style="text-align: center;" | <math>r_{m_i} = \rho \left({\partial u_i \over \partial t}+u_j{\partial u_i \over \partial x_j}\right)+ {\partial p \over \partial x_i}- {\partial s_{ij} \over \partial x_j}-b_i</math>
162
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
163
|-
164
| style="text-align: center;" | <math> r_d = {\partial u_i \over \partial x_i}\qquad i,j = 1, n_d </math>
165
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
166
|}
167
|}
168
169
Above <math display="inline">\Omega </math> is the analysis domain, <math display="inline">n_d</math> is the number of space dimensions (<math display="inline">n_d=2</math> for 2D problems), <math display="inline">u_i</math> is the velocity along the ith global axis, <math display="inline">\rho </math> is the (constant) density of the fluid, <math display="inline">p</math> is the absolute pressure (defined positive in compression), <math display="inline">b_i</math> are the body forces and <math display="inline">s_{ij}</math> are the viscous deviatoric stresses related to the viscosity <math display="inline">\mu </math> by the standard expression
170
171
{| class="formulaSCP" style="width: 100%; text-align: left;" 
172
|-
173
| 
174
{| style="text-align: left; margin:auto;width: 100%;" 
175
|-
176
| style="text-align: center;" | <math>s_{ij}=2\mu \left(\dot \varepsilon _{ij} - \delta _{ij} {1\over 3} {\partial u_k \over \partial x_k}\right) </math>
177
|}
178
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
179
|}
180
181
where <math display="inline">\delta _{ij}</math> is the Kronecker delta and the strain rates <math display="inline">\dot \varepsilon _{ij}</math> are
182
183
{| class="formulaSCP" style="width: 100%; text-align: left;" 
184
|-
185
| 
186
{| style="text-align: left; margin:auto;width: 100%;" 
187
|-
188
| style="text-align: center;" | <math>\dot \varepsilon _{ij}={1\over 2} \left({\partial u_i \over \partial x_j}+{\partial u_j \over \partial x_i}\right) </math>
189
|}
190
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
191
|}
192
193
The FIC boundary conditions  are
194
195
{| class="formulaSCP" style="width: 100%; text-align: left;" 
196
|-
197
| 
198
{| style="text-align: left; margin:auto;width: 100%;" 
199
|-
200
| style="text-align: center;" | <math>n_j \sigma _{ij} -t_i + \underline{{1\over 2} h_j n_j r_{m_i}}{1\over 2} h_j n_j r_{m_i}=0 \quad \hbox{on }\Gamma _t </math>
201
|}
202
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
203
|}
204
205
{| class="formulaSCP" style="width: 100%; text-align: left;" 
206
|-
207
| 
208
{| style="text-align: left; margin:auto;width: 100%;" 
209
|-
210
| style="text-align: center;" | <math>u_j - u_j^p =0 \quad \hbox{on }\Gamma _u </math>
211
|}
212
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
213
|}
214
215
and the initial condition is <math display="inline">u_j =u_j^0</math> for <math display="inline">t=t_0</math>.
216
217
Summation convention for repeated indices in products and derivatives is used unless otherwise specified.
218
219
In Eqs.(13) and (14) <math display="inline">t_i</math> and <math display="inline">u_j^p</math> are surface tractions and prescribed displacements on the boundaries <math display="inline">\Gamma _t</math> and <math display="inline">\Gamma _u</math>, respectively, <math display="inline">n_j</math> are the components of the unit normal vector to the boundary and <math display="inline">\sigma _{ij}</math> are the total stresses given by <math display="inline">\sigma _{ij}=s_{ij}-\delta _{ij}p</math>.  The sign in front the stabilization term in Eq.(13) is positive due to the definition of <math display="inline">r_{m_i}</math> in Eq.(9).
220
221
The <math display="inline">h_i's</math> in above equations are characteristic lengths of the domain where balance of momentum and mass is enforced. In Eq.(13) these lengths define the domain where equilibrium of boundary tractions is established <span id='citeF-32'></span>[[#cite-32|[32]]]. In the discretized problem the <math display="inline">h_{i,s}</math> become of the order of a typical element dimension as described in Section 9. Note that by making <math display="inline">h_i=0</math> the standard infinitessimal form of the fluid mechanics equations is recovered <span id='citeF-1'></span>[[#cite-1|[1]]].
222
223
Eqs.(7)&#8211;(14) are the starting  point for deriving stabilized FEM  for solving the incompressible Navier-Stokes equations. The underlined FIC terms in Eq.(7) are essential to overcome the numerical instabilities due to the convective terms in the momentum equations, whereas the underlined terms in Eq.(8) take care of the instabilities due to the incompressibility constraint. An interesting feature of the FIC formulation is that it allows to use  equal order interpolation for the velocity and pressure variables <span id='citeF-37'></span>[[#cite-37|[37]]].
224
225
===3.1 Stabilized integral forms===
226
227
From the momentum equations it can be obtained <span id='citeF-37'></span>[[#cite-37|[37]]]
228
229
{| class="formulaSCP" style="width: 100%; text-align: left;" 
230
|-
231
| 
232
{| style="text-align: left; margin:auto;width: 100%;" 
233
|-
234
| style="text-align: center;" | <math>{\partial r_d \over \partial x_i}\simeq {h_j\over 2a_i} {\partial r_{m_i} \over \partial x_j}\quad ,\quad \hbox{no sum in }i </math>
235
|}
236
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
237
|}
238
239
where
240
241
{| class="formulaSCP" style="width: 100%; text-align: left;" 
242
|-
243
| 
244
{| style="text-align: left; margin:auto;width: 100%;" 
245
|-
246
| style="text-align: center;" | <math>a_i = {2\mu \over 3} +{\rho u_i h_i\over 2}\quad ,\quad \hbox{no sum in }i </math>
247
|}
248
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
249
|}
250
251
Substituting Eq.(15) into Eq.(8) and retaining the terms involving the derivatives of <math display="inline">r_{m_i}</math> with respect to <math display="inline">x_i</math> only, leads to the following alternative expression for the stabilized mass balance equation
252
253
{| class="formulaSCP" style="width: 100%; text-align: left;" 
254
|-
255
| 
256
{| style="text-align: left; margin:auto;width: 100%;" 
257
|-
258
| style="text-align: center;" | <math>r_d - \sum \limits _{i=1}^{n_d} \tau _i {\partial r_{m_i} \over \partial x_i}=0 </math>
259
|}
260
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
261
|}
262
263
with
264
265
{| class="formulaSCP" style="width: 100%; text-align: left;" 
266
|-
267
| 
268
{| style="text-align: left; margin:auto;width: 100%;" 
269
|-
270
| style="text-align: center;" | <math>\tau _i = \left({8\mu \over 3h_i^2}+{2\rho u_i\over h_i}\right)^{-1} </math>
271
|}
272
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
273
|}
274
275
The <math display="inline">\tau _i</math>'s in Eq.(18) when scaled by the density are termed in the stabilization literature ''intrinsic time parameters''. The interest of Eq.(17) is that it introduces the  first space derivatives of the momentum equations (and the corresponding laplacian of pressure terms) into the mass balance equation. These terms have intrinsic good stability properties as explained next.
276
277
The weighted residual form of the momentum and mass balance equations (Eqs.(7) and (17)) is written as
278
279
{| class="formulaSCP" style="width: 100%; text-align: left;" 
280
|-
281
| 
282
{| style="text-align: left; margin:auto;width: 100%;" 
283
|-
284
| style="text-align: center;" | <math>\int _\Omega \delta u_i \left[r_{m_i} - {h_j\over 2} {\partial r_{m_i} \over \partial x_j}\right]+ \int _{\Gamma _t} \delta u_i (\sigma _{ij} n_j - t_i + {h_j \over 2} n_j r_{m_i}) d\Gamma =0 </math>
285
|}
286
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
287
|}
288
289
{| class="formulaSCP" style="width: 100%; text-align: left;" 
290
|-
291
| 
292
{| style="text-align: left; margin:auto;width: 100%;" 
293
|-
294
| style="text-align: center;" | <math>\int _\Omega q \left[r_d - \sum \limits _{i=1}^{n_d} \tau _i {\partial r_{m_i} \over \partial x_i}\right]d\Omega =0 </math>
295
|}
296
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
297
|}
298
299
where <math display="inline">\delta u_i</math> and <math display="inline">q</math> are arbitrary weighting functions representing virtual velocities and virtual pressure fields. Integrating by parts the <math display="inline">r_{m_i}</math> terms  leads to
300
301
{| class="formulaSCP" style="width: 100%; text-align: left;" 
302
|-
303
| 
304
{| style="text-align: left; margin:auto;width: 100%;" 
305
|-
306
| style="text-align: center;" | <math>\int _\Omega \delta u_i r_{m_i} + \int _{\Gamma _t} \delta u_i (\sigma _{ij} n_j - t_i)d\Gamma + \int _{\Omega } {h_j\over 2}{\partial \delta u_i \over \partial x_j} r_{m_i} d\Omega =0 </math>
307
|}
308
| style="width: 5px;text-align: right;white-space: nowrap;" |  (21a)
309
|}
310
311
{| class="formulaSCP" style="width: 100%; text-align: left;" 
312
|-
313
| 
314
{| style="text-align: left; margin:auto;width: 100%;" 
315
|-
316
| style="text-align: center;" | <math>\int _\Omega q r_d d\Omega + \int _\Omega \left[\sum \limits _{i=1}^{n_d}\tau _i {\partial q \over \partial x_i}r_{m_i} \right]d\Omega - \int _\Gamma \left[\sum \limits _{i=1}^{n_d} q \tau _i n_i r_{m_i}\right]d\Gamma =0</math>
317
|}
318
| style="width: 5px;text-align: right;white-space: nowrap;" |  (21b)
319
|}
320
321
We will neglect hereonwards the third integral in Eq.(21b) by assuming that <math display="inline">r_{m_i}</math> is negligible on the boundaries. The deviatoric stresses and the pressure terms in the first integral of Eq.(21a) are integrated by parts in the usual manner. The resulting momentum and mass balance equations are
322
323
{| class="formulaSCP" style="width: 100%; text-align: left;" 
324
|-
325
| 
326
{| style="text-align: left; margin:auto;width: 100%;" 
327
|-
328
| style="text-align: center;" | <math>\begin{array}{r} \displaystyle \int _\Omega \left[\delta u_i\rho \left({\partial u_i \over \partial t}+u_j {\partial {u_i} \over \partial x_j}\right)+ {\partial \delta u_i \over \partial x_j}\left(\mu {\partial u_i \over \partial x_j}-\delta _{ij}p \right)\right]d\Omega -  \int _{\Omega } \delta u_i b_i d\Omega - \int _{\Gamma _t} \delta u_i t_id\Gamma +\qquad \\ \displaystyle + \int _{\Omega } {h_j\over 2}{\partial \delta u_i \over \partial x_j} r_{m_i} d\Omega =0\qquad  \end{array}</math>
329
|}
330
| style="width: 5px;text-align: right;white-space: nowrap;" |  (22a)
331
|}
332
333
{| class="formulaSCP" style="width: 100%; text-align: left;" 
334
|-
335
| 
336
{| style="text-align: left; margin:auto;width: 100%;" 
337
|-
338
| style="text-align: center;" | <math>\int _\Omega q {\partial u_i \over \partial x_i} d\Omega + \int _\Omega \left[\sum \limits _{i=1}^{n_d} \tau _i {\partial q \over \partial x_i} r_{m_i}\right]d\Omega =0</math>
339
|}
340
| style="width: 5px;text-align: right;white-space: nowrap;" |  (22b)
341
|}
342
343
In the derivation of the viscous term in Eq.(22a) we have used the following identity (prior to the integration by parts)
344
345
{| class="formulaSCP" style="width: 100%; text-align: left;" 
346
|-
347
| 
348
{| style="text-align: left; margin:auto;width: 100%;" 
349
|-
350
| style="text-align: center;" | <math>{\partial s_{ij} \over \partial x_j}=2\mu {\partial \varepsilon _{ij} \over \partial x_j}=\mu {\partial ^2u_i\over \partial x_j \partial x_j} </math>
351
|}
352
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
353
|}
354
355
Eq.(23) is identically true for the exact incompressible limit <math display="inline">\left({\partial u_i \over \partial x_i}=0\right)</math>.
356
357
===3.2 Convective and pressure gradient projections===
358
359
The computation of the residual terms can be simplified if we introduce  the convective and pressure gradient projections <math display="inline">c_i</math> and <math display="inline">\pi _i</math>, respectively defined as
360
361
{| class="formulaSCP" style="width: 100%; text-align: left;" 
362
|-
363
| 
364
{| style="text-align: left; margin:auto;width: 100%;" 
365
|-
366
| style="text-align: center;" | <math>\begin{array}{l}\displaystyle c_i = r_{m_i} -\rho u_j {\partial u_i \over \partial x_j}\\ \displaystyle \pi _i = r_{m_i} - {\partial p \over \partial x_i} \end{array} </math>
367
|}
368
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
369
|}
370
371
We can express <math display="inline">r_{m_i}</math> in  Eqs.(22a) and (22b) in terms of <math display="inline">c_i</math> and <math display="inline">\pi _i</math>, respectively which then become additional variables. The system of integral equations is now augmented in the necessary number of additional equations by imposing that the residual <math display="inline">r_{m_i}</math> vanishes (in average sense) for both forms given by Eqs.(24). This gives the final system of governing equation as:
372
373
{| class="formulaSCP" style="width: 100%; text-align: left;" 
374
|-
375
| 
376
{| style="text-align: left; margin:auto;width: 100%;" 
377
|-
378
| style="text-align: center;" | <math>\int _\Omega \left[\delta u_i\rho \left({\partial u_i \over \partial t}+u_j {\partial {u_i} \over \partial x_j}\right)+ {\partial \delta u_i \over \partial x_j}\left(\mu {\partial u_i \over \partial x_j}-\delta _{ij}p \right)\right]d\Omega -  \int _{\Omega } \delta u_i b_i d\Omega - \int _{\Gamma _t} \delta u_i t_id\Gamma +</math>
379
|-
380
| style="text-align: center;" | <math> + \int _{\Omega } {h_k\over 2}{\partial (\delta u_i) \over \partial x_k} \left(\rho u_j {\partial {u_i} \over \partial x_j} + c_i\right)d\Omega =0\qquad  </math>
381
|}
382
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
383
|}
384
385
{| class="formulaSCP" style="width: 100%; text-align: left;" 
386
|-
387
| 
388
{| style="text-align: left; margin:auto;width: 100%;" 
389
|-
390
| style="text-align: center;" | <math>\int _\Omega q {\partial u_i \over \partial x_i} d\Omega + \int _\Omega \sum \limits _{i=1}^{n_d} \tau _i {\partial q \over \partial x_i} \left({\partial p \over \partial x_i}+\pi _i\right)d\Omega =0 </math>
391
|}
392
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
393
|}
394
395
{| class="formulaSCP" style="width: 100%; text-align: left;" 
396
|-
397
| 
398
{| style="text-align: left; margin:auto;width: 100%;" 
399
|-
400
| style="text-align: center;" | <math>\int _\Omega \delta c_i \rho \left(\rho u_j {\partial {u_i} \over \partial x_j} + c_i\right)d\Omega =0 \qquad \hbox{no sum in }i </math>
401
|}
402
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
403
|}
404
405
{| class="formulaSCP" style="width: 100%; text-align: left;" 
406
|-
407
| 
408
{| style="text-align: left; margin:auto;width: 100%;" 
409
|-
410
| style="text-align: center;" | <math>\int _\Omega \delta \pi _i \tau _i \left({\partial p \over \partial x_i}+\pi _i\right)d\Omega =0\qquad \hbox{no sum in }i </math>
411
|}
412
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
413
|}
414
415
with <math display="inline">i,j,k=1,n_d</math>.  In Eqs.(27) and (28) <math display="inline">\delta c_i</math> and <math display="inline">\delta \pi _i</math> are appropriate weighting functions and the <math display="inline">\rho </math> and <math display="inline">\tau _i</math> weights are introduced for convenience.
416
417
We note that accounting for the convective and pressure gradient projections enforces the consistency of the formulation as it ensures that the stabilization terms in Eqs.(25&#8211;28) have a residual form which vanishes for the “exact” solution. Neglecting these terms can reduce the accuracy of the numerical solution and it makes the formulation more sensitive to the value of the stabilization parameters as shown in Example 10.1 and in references <span id='citeF-60'></span>[[#cite-60|[60]]].
418
419
==4 FINITE ELEMENT DISCRETIZATION==
420
421
We choose <math display="inline">C^\circ </math> continuous linear interpolations of the velocities, the pressure, the convection projections <math display="inline">c_i</math> and the pressure gradient projections <math display="inline">\pi _i</math> over three node triangles (2D) and four node tetrahedra (3D). The linear interpolations are written as
422
423
{| class="formulaSCP" style="width: 100%; text-align: left;" 
424
|-
425
| 
426
{| style="text-align: left; margin:auto;width: 100%;" 
427
|-
428
| style="text-align: center;" | <math>\begin{array}{l}\displaystyle u_i =  N^k \bar u_i^k \quad , \quad p = N^k \bar p^k\\ \displaystyle c_i = N^k \bar c_i^k \quad , \quad \pi _i =  N^k \bar \pi _i^k \end{array} </math>
429
|}
430
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
431
|}
432
433
where the sum goes over the number of nodes of each element <math display="inline">n</math> (<math display="inline">n=3/4</math> for triangles/tetrahedra), <math display="inline">\bar {(\cdot )}^k</math> denotes nodal variables and <math display="inline">N^k</math> are the linear shape functions <span id='citeF-1'></span>[[#cite-1|[1]]].
434
435
Substituting the approximations (29) into Eqs.(25&#8211;28) and choosing the Galerking form with <math display="inline">\delta u_i =q=\delta c_i=\delta \pi _i =N^i</math> leads to following system of discretized equations
436
437
{| class="formulaSCP" style="width: 100%; text-align: left;" 
438
|-
439
| 
440
{| style="text-align: left; margin:auto;width: 100%;" 
441
|-
442
| style="text-align: center;" | <math>\displaystyle {\boldsymbol M}\dot{\bar {\boldsymbol u}} + {\boldsymbol H} \bar {\boldsymbol u} - {\boldsymbol G}\bar {\boldsymbol p}+{\boldsymbol C}\bar {\boldsymbol c}={\boldsymbol f}</math>
443
|}
444
| style="width: 5px;text-align: right;white-space: nowrap;" | (30a)
445
|}
446
447
{| class="formulaSCP" style="width: 100%; text-align: left;" 
448
|-
449
| 
450
{| style="text-align: left; margin:auto;width: 100%;" 
451
|-
452
| style="text-align: center;" | <math>\displaystyle {\boldsymbol G}^T \bar {\boldsymbol u} + \hat{\boldsymbol L}\bar {\boldsymbol p}+{\boldsymbol Q}\bar {\boldsymbol \pi }={\boldsymbol 0}</math>
453
|}
454
| style="width: 5px;text-align: right;white-space: nowrap;" | (30b)
455
|}
456
457
{| class="formulaSCP" style="width: 100%; text-align: left;" 
458
|-
459
| 
460
{| style="text-align: left; margin:auto;width: 100%;" 
461
|-
462
| style="text-align: center;" | <math>\displaystyle \hat {\boldsymbol C}\bar{\boldsymbol u}+ {\boldsymbol M}\bar {\boldsymbol c}={\boldsymbol 0}</math>
463
|}
464
| style="width: 5px;text-align: right;white-space: nowrap;" | (30c)
465
|}
466
467
{| class="formulaSCP" style="width: 100%; text-align: left;" 
468
|-
469
| 
470
{| style="text-align: left; margin:auto;width: 100%;" 
471
|-
472
| style="text-align: center;" | <math>\displaystyle {\boldsymbol Q}^T \bar {\boldsymbol p} + \hat {\boldsymbol M}\bar {\boldsymbol \pi }={\boldsymbol 0}</math>
473
|}
474
| style="width: 5px;text-align: right;white-space: nowrap;" | (30d)
475
|}
476
477
where
478
479
{| class="formulaSCP" style="width: 100%; text-align: left;" 
480
|-
481
| 
482
{| style="text-align: left; margin:auto;width: 100%;" 
483
|-
484
| style="text-align: center;" | <math>{\boldsymbol H}={\boldsymbol A}+{\boldsymbol K}+\hat {\boldsymbol K} </math>
485
|}
486
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
487
|}
488
489
If we denote the node indexes with superscripts <math display="inline">a,b</math>, the space indices with subscripts <math display="inline">i,j</math>, the element contributions to the components of the arrays involved in these equations are
490
491
{| class="formulaSCP" style="width: 100%; text-align: left;" 
492
|-
493
| 
494
{| style="text-align: left; margin:auto;width: 100%;" 
495
|-
496
| style="text-align: center;" | <math>\begin{array}{l} \displaystyle M_{ij}^{ab}= \left(\int _{\Omega ^e} \rho N^a N^b d\Omega \right)\delta _{ij} \quad ,\quad A_{ij}^{ab}= \left(\int _{\Omega ^e} \rho N^a ({\boldsymbol u}^T {\nabla } N^b) d\Omega \right)\delta _{ij}\\ \\ \displaystyle {K}_{ij}^{ab} = \left(\int _{\Omega ^e} \mu {\boldsymbol \nabla }^T N^a{\boldsymbol \nabla }N^b  d\Omega \right)\delta _{ij} \quad ,\quad {\boldsymbol \nabla } = \left[{\partial  \over \partial x_1},{\partial  \over \partial x_2},{\partial  \over \partial x_3}\right]^T\\ \\ \displaystyle \hat{K}_{ij}^{ab} = \left({1\over 2} \int _{\Omega ^e} ({\boldsymbol h}^T {\boldsymbol \nabla } N^a)(\rho {\boldsymbol u}^T {\boldsymbol \nabla } N^b)d\Omega \right)\delta _{ij}\quad ,\quad {G}_{i}^{ab}=\int _{\Omega ^e} {\partial N^a \over \partial x_i}N^b d\Omega \\ \\ \displaystyle {\boldsymbol C}= \left[\begin{matrix}{\boldsymbol C}_1\\ {\boldsymbol C}_2\\ {\boldsymbol C}_3\\\end{matrix}\right]\quad ,\quad {C}_1^{ab}={C}_2^{ab}={C}_3^{ab} = {1\over 2}  \int _{\Omega ^e} [{\boldsymbol h}^T {\boldsymbol \nabla } N^a]N^bd\Omega \\ \\ \displaystyle \hat L^{ab}= \int _{\Omega ^e} ({\boldsymbol \nabla }^T N^a) [\tau ] {\boldsymbol \nabla } N^b d\Omega \quad ,\quad [\tau ]= \left[\begin{matrix}\tau _1 &0 &0 \\ 0 & \tau _2&0\\ 0&0& \tau _3\\\end{matrix}\right]\\ \\ \displaystyle {\boldsymbol Q}= [{\boldsymbol Q}_1,{\boldsymbol Q}_2,{\boldsymbol Q}_3] \quad ,\quad  \displaystyle Q_{i}^{ab} = \int _{\Omega ^e}\tau _i {\partial N^a \over \partial x_i} N^b d\Omega \quad \quad \hbox{no sum in }i \end{array}</math>
497
|}
498
|}
499
500
{| class="formulaSCP" style="width: 100%; text-align: left;" 
501
|-
502
| 
503
{| style="text-align: left; margin:auto;width: 100%;" 
504
|-
505
| style="text-align: center;" | <math>\begin{array}{l} \displaystyle \hat{\boldsymbol C}= [\hat{\boldsymbol C}_1,\hat{\boldsymbol C}_2,\hat{\boldsymbol C}_3] \quad ,\quad  \displaystyle \hat{C}_1^{ab}=\hat{C}_2^{ab}=\hat{C}_3^{ab} =  \int _{\Omega ^e} \rho ^2 N^a ({\boldsymbol u}^T {\boldsymbol \nabla }N^b)d\Omega \\ \\ \displaystyle  \hat {M}^{ab}_{ij}= \left(\int _{\Omega ^e} \tau _i N^a N^b d\Omega \right)\delta _{ij}\quad ,\quad  \displaystyle {f}_i^a = \int _{\Omega ^e} N^a f_i d\Omega + \int _{\Gamma ^e} N^a t_i d\Gamma  \end{array}</math>
506
|}
507
|}
508
509
{| class="formulaSCP" style="width: 100%; text-align: left;" 
510
|-
511
| 
512
{| style="text-align: left; margin:auto;width: 100%;" 
513
|-
514
| style="text-align: center;" | 
515
|}
516
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
517
|}
518
519
It is understood that all the arrays are matrices (except <math display="inline">{\boldsymbol f}</math>, which is a vector) whose components are obtained by grouping together the left indices in the previous expressions (<math display="inline">a</math> and possibly <math display="inline">i</math>) and the right indices (<math display="inline">b</math> and possibly <math display="inline">j</math>).
520
521
Note that the stabilization matrix <math display="inline">\hat{\boldsymbol K}</math> in Eq.(31) adds additional orthotropic diffusivity terms of value <math display="inline">\rho \displaystyle{h_ku_l\over 2}</math>.
522
523
===4.1 Transient solution scheme===
524
525
The solution in time  of the system of Eqs.(30) can be written in general form as
526
527
{| class="formulaSCP" style="width: 100%; text-align: left;" 
528
|-
529
| 
530
{| style="text-align: left; margin:auto;width: 100%;" 
531
|-
532
| style="text-align: center;" | <math>{\boldsymbol M} \displaystyle{1\over \Delta t} (\bar{\boldsymbol u}^{n+1}-\bar{\boldsymbol u}^{n}) + {\boldsymbol H}^{n+\theta }\bar{\boldsymbol u} ^{n+\theta } - {\boldsymbol G}\bar{\boldsymbol p}^{n+\theta }+ {\boldsymbol C}^{n+\theta }\bar {\boldsymbol c}^{n+\theta }={\boldsymbol f}^{n+\theta }</math>
533
|}
534
| style="width: 5px;text-align: right;white-space: nowrap;" |  (33a)
535
|}
536
537
{| class="formulaSCP" style="width: 100%; text-align: left;" 
538
|-
539
| 
540
{| style="text-align: left; margin:auto;width: 100%;" 
541
|-
542
| style="text-align: center;" | <math>{\boldsymbol G}^T \bar {\boldsymbol u}^{n+\theta }+\hat {\boldsymbol L}^{n+\theta } \bar {\boldsymbol p}^{n+\theta }+{\boldsymbol Q}\bar {\boldsymbol \pi }^{n+\theta }={\boldsymbol 0}</math>
543
|}
544
| style="width: 5px;text-align: right;white-space: nowrap;" |  (33b)
545
|}
546
547
{| class="formulaSCP" style="width: 100%; text-align: left;" 
548
|-
549
| 
550
{| style="text-align: left; margin:auto;width: 100%;" 
551
|-
552
| style="text-align: center;" | <math>\hat {\boldsymbol C}^{n+\theta } \bar {\boldsymbol u}^{n+\theta }+ {\boldsymbol M} \bar {\boldsymbol c}^{n+\theta }={\boldsymbol 0}</math>
553
|}
554
| style="width: 5px;text-align: right;white-space: nowrap;" |  (33c)
555
|}
556
557
{| class="formulaSCP" style="width: 100%; text-align: left;" 
558
|-
559
| 
560
{| style="text-align: left; margin:auto;width: 100%;" 
561
|-
562
| style="text-align: center;" | <math>{\boldsymbol G}^T \bar {\boldsymbol p}^{n+\theta }+\hat {\boldsymbol M}^{n+\theta }\bar {\boldsymbol \pi }^{n+\theta }={\boldsymbol 0}</math>
563
|}
564
| style="width: 5px;text-align: right;white-space: nowrap;" |  (33d)
565
|}
566
567
where <math display="inline">{\boldsymbol H}^{n+\theta }={\boldsymbol H} ({\boldsymbol u}^{n+\theta })</math>, etc and the parameter <math display="inline">\theta \in [0,1]</math>. The direct monolitic solution of Eqs.(33) is possible using an adequate iterative scheme. However, it is usually more convenient to make use of a fractional step method or a predictor-corrector method. Two interesting approaches of this kind implemented by the authors are described next.
568
569
===4.2 Fractional step method===
570
571
A fractional step scheme is derived by noting that the discretized momentum equation (33a) can be split into the two following equations
572
573
{| class="formulaSCP" style="width: 100%; text-align: left;" 
574
|-
575
| 
576
{| style="text-align: left; margin:auto;width: 100%;" 
577
|-
578
| style="text-align: center;" | <math>{\boldsymbol M} \displaystyle{1\over \Delta t} (\tilde{\boldsymbol u}^{n+1}-\bar{\boldsymbol u}^{n}) + {\boldsymbol H}^{n+\theta }\bar{\boldsymbol u} ^{n+\theta } - \alpha {\boldsymbol G}\bar{\boldsymbol p}^{n} + {\boldsymbol C}^{n+\theta }\bar {\boldsymbol c}^{n+\theta }={\boldsymbol f}^{n+\theta }</math>
579
|}
580
| style="width: 5px;text-align: right;white-space: nowrap;" |  (34a)
581
|}
582
583
{| class="formulaSCP" style="width: 100%; text-align: left;" 
584
|-
585
| 
586
{| style="text-align: left; margin:auto;width: 100%;" 
587
|-
588
| style="text-align: center;" | <math>{\boldsymbol M} \displaystyle{1\over \Delta t} (\bar{\boldsymbol u}^{n+1}-\tilde{\boldsymbol u}^{n+1})- {\boldsymbol G}(\bar{\boldsymbol p}^{n+1}-\alpha \bar {\boldsymbol p}^{n})={\boldsymbol 0}</math>
589
|}
590
| style="width: 5px;text-align: right;white-space: nowrap;" |  (34b)
591
|}
592
593
In Eqs.(34) <math display="inline">\tilde{\boldsymbol u}^{n+1}</math> is a predicted value of the velocity at time <math display="inline">n+1</math> and <math display="inline">\alpha </math> is a variable whose values of interest are zero and one. For <math display="inline">\alpha =0</math> (first order scheme) the splitting error is of order <math display="inline">0 (\Delta t)</math>, whereas for <math display="inline">\alpha =1</math> (second order scheme) the error is of order <math display="inline">0 (\Delta t^2)</math> <span id='citeF-52'></span>[[#cite-52|[52]]].
594
595
Eqs.(34) are completed with the following three equations emanating from Eqs.(33b-d)
596
597
{| class="formulaSCP" style="width: 100%; text-align: left;" 
598
|-
599
| 
600
{| style="text-align: left; margin:auto;width: 100%;" 
601
|-
602
| style="text-align: center;" | <math>{\boldsymbol G}^T\bar{\boldsymbol u}^{n+1}+\hat {\boldsymbol L}^n \bar{\boldsymbol p}^{n+1}+{\boldsymbol Q}\bar {\boldsymbol \pi }^{n}= {\boldsymbol 0}</math>
603
|}
604
| style="width: 5px;text-align: right;white-space: nowrap;" |  (35a)
605
|}
606
607
{| class="formulaSCP" style="width: 100%; text-align: left;" 
608
|-
609
| 
610
{| style="text-align: left; margin:auto;width: 100%;" 
611
|-
612
| style="text-align: center;" | <math>\hat {\boldsymbol C}^{n+1} \bar{\boldsymbol u}^{n+1} + {\boldsymbol M} \bar {\boldsymbol c}^{n+1}= {\boldsymbol 0}</math>
613
|}
614
| style="width: 5px;text-align: right;white-space: nowrap;" |  (35b)
615
|}
616
617
{| class="formulaSCP" style="width: 100%; text-align: left;" 
618
|-
619
| 
620
{| style="text-align: left; margin:auto;width: 100%;" 
621
|-
622
| style="text-align: center;" | <math>{\boldsymbol Q}^T \bar{\boldsymbol p}^{n+1}+ \hat {\boldsymbol M}^{n+1} \bar {\boldsymbol \pi }^{n+1}= {\boldsymbol 0}</math>
623
|}
624
| style="width: 5px;text-align: right;white-space: nowrap;" |  (35c)
625
|}
626
627
The value of <math display="inline">\bar{\boldsymbol u}^{n+1}</math> obtained from Eq.(34b) is substituted into Eq.(35a) to give
628
629
{| class="formulaSCP" style="width: 100%; text-align: left;" 
630
|-
631
| 
632
{| style="text-align: left; margin:auto;width: 100%;" 
633
|-
634
| style="text-align: center;" | <math>{\boldsymbol G}^T\tilde{\boldsymbol u}^{n+1}+ \Delta t {\boldsymbol G}^T {\boldsymbol M}^{-1} {\boldsymbol G} (\bar{\boldsymbol p}^{n+1} - \alpha \bar{\boldsymbol p}^n)+ \hat {\boldsymbol L}^n {\boldsymbol p}^{n+1}+{\boldsymbol Q}\bar {\boldsymbol \pi }^n={\boldsymbol 0} </math>
635
|}
636
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
637
|}
638
639
The product <math display="inline">{\boldsymbol G}^T {\boldsymbol M}^{-1} {\boldsymbol G}</math> can be approximated by a laplacian matrix, i.e.
640
641
{| class="formulaSCP" style="width: 100%; text-align: left;" 
642
|-
643
| 
644
{| style="text-align: left; margin:auto;width: 100%;" 
645
|-
646
| style="text-align: center;" | <math>{\boldsymbol G}^T {\boldsymbol M}^{-1} {\boldsymbol G}={1\over \rho } {\boldsymbol L}\quad \hbox{with }L^{ab}=\int _{ \Omega ^e} {\boldsymbol \nabla }^T N^a {\boldsymbol \nabla } N^b d\Omega  </math>
647
|}
648
| style="width: 5px;text-align: right;white-space: nowrap;" | (37)
649
|}
650
651
where <math display="inline">L^{ab}</math> are the element contributions to <math display="inline">{\boldsymbol L}</math>.
652
653
The steps of the fractional step scheme are:
654
655
'''Step 1'''
656
657
Eq.(34a) is linearized in the following form
658
659
{| class="formulaSCP" style="width: 100%; text-align: left;" 
660
|-
661
| 
662
{| style="text-align: left; margin:auto;width: 100%;" 
663
|-
664
| style="text-align: center;" | <math>{\boldsymbol M} {\tilde{\boldsymbol u}^{n+1} - \bar{\boldsymbol u}^{n}\over \Delta t} + \tilde{\boldsymbol H}^{n+\theta }\tilde{\boldsymbol u}^{n+\theta } - \alpha {\boldsymbol G} \bar{\boldsymbol p}^n + \tilde{\boldsymbol C}^{n+\theta }\bar{\boldsymbol c}^{n}= \bar{\boldsymbol f}^{n+\theta }</math>
665
|}
666
| style="width: 5px;text-align: right;white-space: nowrap;" | (38)
667
|}
668
669
where <math display="inline">\tilde{\boldsymbol u}^{n+\theta }=\theta \tilde{\boldsymbol u}^{n+1} + (1-\theta )\bar{\boldsymbol u}^{n}</math>, <math display="inline"> \tilde{\boldsymbol H}^{n+\theta } = {\boldsymbol H} (\tilde{\boldsymbol u}^{n+\theta })</math>, and <math display="inline">\tilde{\boldsymbol C}^{n+\theta }= {\boldsymbol C} (\tilde{\boldsymbol u}^{n+\theta })</math>. We have chosen in our work <math display="inline">\theta =0</math>. For this value, the fractional nodal velocities <math display="inline">\tilde {\boldsymbol u}^{n+1}</math> can be  explicitely computed from Eq.(38) by
670
671
{| class="formulaSCP" style="width: 100%; text-align: left;" 
672
|-
673
| 
674
{| style="text-align: left; margin:auto;width: 100%;" 
675
|-
676
| style="text-align: center;" | <math>\tilde{\boldsymbol u}^{n+1} = \bar{\boldsymbol u}^{n} - \Delta t  {\boldsymbol M}^{-1}_d [\tilde{\boldsymbol H}^{n}\bar{\boldsymbol u}^{n} - \alpha {\boldsymbol G} \bar{\boldsymbol p}^n + {\boldsymbol C}^{n}\bar{\boldsymbol c}^{n} - \bar{\boldsymbol f}^{n}]</math>
677
|}
678
| style="width: 5px;text-align: right;white-space: nowrap;" | (39)
679
|}
680
681
where <math display="inline">{\boldsymbol M}_d</math> is the lumped diagonal form of '''M'''.
682
683
<br/>
684
685
'''Step 2''' Compute <math display="inline">\bar{\boldsymbol p}^{n+1}</math> from Eq.(36) as
686
687
{| class="formulaSCP" style="width: 100%; text-align: left;" 
688
|-
689
| 
690
{| style="text-align: left; margin:auto;width: 100%;" 
691
|-
692
| style="text-align: center;" | <math>\bar{\boldsymbol p}^{n+1}= -[\hat{\boldsymbol L}^n + {\Delta t \over \rho } {\boldsymbol L}]^{-1} [{\boldsymbol G}^T\tilde{\boldsymbol u}^{n+1} - \alpha {\Delta t \over \rho }{\boldsymbol L}\bar{\boldsymbol p}^n +{\boldsymbol Q} \bar{\boldsymbol \pi }^{n}] </math>
693
|}
694
| style="width: 5px;text-align: right;white-space: nowrap;" | (40)
695
|}
696
697
'''Step 3''' Compute <math display="inline"> \bar{\boldsymbol u}^{n+1}</math> explicitly from Eq.(34a) as
698
699
{| class="formulaSCP" style="width: 100%; text-align: left;" 
700
|-
701
| 
702
{| style="text-align: left; margin:auto;width: 100%;" 
703
|-
704
| style="text-align: center;" | <math>\bar {\boldsymbol u}^{n+1}=\tilde{\boldsymbol u}^{n+1}+ \Delta t  {\boldsymbol M}_d^{-1} {\boldsymbol G} (\bar {\boldsymbol p}^{n+1}- \alpha \bar {\boldsymbol p}^n) </math>
705
|}
706
| style="width: 5px;text-align: right;white-space: nowrap;" | (41)
707
|}
708
709
<br/>
710
711
'''Step 4''' Compute <math display="inline"> \bar{\boldsymbol c}^{n+1}</math> explicitly from Eq.(35b) as
712
713
{| class="formulaSCP" style="width: 100%; text-align: left;" 
714
|-
715
| 
716
{| style="text-align: left; margin:auto;width: 100%;" 
717
|-
718
| style="text-align: center;" | <math>\bar{\boldsymbol c}^{n+1}=- {\boldsymbol M}_d^{-1}\hat {\boldsymbol C}^{n+1}\bar{\boldsymbol u}^{n+1} </math>
719
|}
720
| style="width: 5px;text-align: right;white-space: nowrap;" | (42)
721
|}
722
723
'''Step 5''' Compute <math display="inline">  \bar{\boldsymbol \pi }^{n+1}</math> explicitly from Eq.(35c) as
724
725
{| class="formulaSCP" style="width: 100%; text-align: left;" 
726
|-
727
| 
728
{| style="text-align: left; margin:auto;width: 100%;" 
729
|-
730
| style="text-align: center;" | <math>\bar{\boldsymbol \pi }^{n+1}=- \hat {\boldsymbol M}_d^{-1} {\boldsymbol Q}^T \bar {\boldsymbol p}^{n+1} </math>
731
|}
732
| style="width: 5px;text-align: right;white-space: nowrap;" | (43)
733
|}
734
735
Above algorithm has improved stabilization properties versus the standard segregation methods due to the introduction of the laplacian matrix <math display="inline">\hat{\boldsymbol L}</math> in Eq.(40). We note that this matrix emanates from the FIC stabilization terms.
736
737
The boundary conditions are applied as follows. No condition is applied in the computation of the fractional velocities <math display="inline">\tilde{\boldsymbol u}^{n+1}</math> in Eq.(39). The prescribed velocities at the boundary are applied when solving for <math display="inline">\bar{\boldsymbol u}^{n+1}</math> in the step 3. The prescribed pressures at the boundary are imposed by making <math display="inline">\bar{\boldsymbol p}^n</math> equal to the prescribed pressure values.
738
739
===4.3 Three steps fractional scheme===
740
741
Steps 4 and 5 can be elliminated by substituting the expression of <math display="inline">\bar{\boldsymbol c}^{n+1}</math> and <math display="inline">\bar{\boldsymbol \pi }^{n+1}</math> from Eqs.(42) and (41) into (39) and (40), respectively, where <math display="inline">\bar{\boldsymbol c}</math> and <math display="inline">\bar{\boldsymbol \pi }</math> are now sampled at <math display="inline">t=n+1</math>. The resulting three steps scheme has few advantages versus the five steps scheme described above, as the solution for <math display="inline">\bar{\boldsymbol u}^{n+1}</math> in Eq.(39) can not longer be made explicit and it requires the inversion of a non symmetric matrix.
742
743
===4.4 Predictor-corrector scheme===
744
745
The fractional step method (of Section 4.2) can be taken as the basis for deriving a predictor-multicorrector scheme which converges to the monolithic time discretized problem. Denoting by <math display="inline">i</math> the <math display="inline">i</math>th iteration of the scheme the resulting linearized system is
746
747
{| class="formulaSCP" style="width: 100%; text-align: left;" 
748
|-
749
| 
750
{| style="text-align: left; margin:auto;width: 100%;" 
751
|-
752
| style="text-align: center;" | <math>{\boldsymbol M} \displaystyle{1\over \theta \Delta t} (\bar{\boldsymbol u}^{n+\theta ,i+1}-\bar{\boldsymbol u}^{n}) + [{\boldsymbol H}^{n+\theta ,i}]\bar{\boldsymbol u} ^{n+\theta ,i+1} - {\boldsymbol G}\bar{\boldsymbol p}^{n+1,i}+ \left[{\boldsymbol C}^{n+\theta ,i}\right]{\boldsymbol c}^{n+\theta ,i}={\boldsymbol f}^{n+1}</math>
753
|}
754
| style="width: 5px;text-align: right;white-space: nowrap;" | (44a)
755
|}
756
757
{| class="formulaSCP" style="width: 100%; text-align: left;" 
758
|-
759
| 
760
{| style="text-align: left; margin:auto;width: 100%;" 
761
|-
762
| style="text-align: center;" | <math>{\boldsymbol G}^T \bar {\boldsymbol u}^{n+\theta ,i+1} + \left[\hat{\boldsymbol L}^{n+1,i+1} +\displaystyle {\Delta t\over \rho }{\boldsymbol L}\right]\bar {\boldsymbol p}^{n+1,i+1}-  \displaystyle{\Delta t\over \rho } {\boldsymbol L} \bar {\boldsymbol p}^{n+1,i}+ {\boldsymbol Q}\bar {\boldsymbol \pi }^{n+1,i}={\boldsymbol 0}</math>
763
|}
764
| style="width: 5px;text-align: right;white-space: nowrap;" | (44b)
765
|}
766
767
{| class="formulaSCP" style="width: 100%; text-align: left;" 
768
|-
769
| 
770
{| style="text-align: left; margin:auto;width: 100%;" 
771
|-
772
| style="text-align: center;" | <math>\left[\hat{\boldsymbol C}^{n+\theta ,i+1}\right]\bar{\boldsymbol u}^{n+\theta ,i+1}+{\boldsymbol M}\bar {\boldsymbol c}^{n+\theta ,i+1}={\boldsymbol 0}</math>
773
|}
774
| style="width: 5px;text-align: right;white-space: nowrap;" | (44c)
775
|}
776
777
{| class="formulaSCP" style="width: 100%; text-align: left;" 
778
|-
779
| 
780
{| style="text-align: left; margin:auto;width: 100%;" 
781
|-
782
| style="text-align: center;" | <math>{\boldsymbol Q}^T \bar {\boldsymbol p}^{n+1,i+1}+[\hat {\boldsymbol M}^{n+1,i+1}]\bar {\boldsymbol \pi }^{n+1,i+1}={\boldsymbol 0}</math>
783
|}
784
| style="width: 5px;text-align: right;white-space: nowrap;" | (44d)
785
|}
786
787
In our work we have chosen <math display="inline">\theta =1</math> (backward differencing). Indeed other schemes are possible (i.e. <math display="inline">\theta = 1/2</math>, Crank-Nicolson, etc) <span id='citeF-52'></span>[[#cite-52|[52]]].
788
789
Eqs.(44a-d) are solved iteratively in a staggered manner for the values of <math display="inline">\bar{\boldsymbol u}^{n+1}</math>, <math display="inline">\bar{\boldsymbol p}^{n+1}</math>, <math display="inline">\bar{\boldsymbol c}^{n+1}</math> and <math display="inline">\bar {\boldsymbol \pi }^{n+1}</math>, respectively.
790
791
The difference with a standard iterative scheme for the monolithic problem comes from the terms involving the laplacian matrix <math display="inline">{\boldsymbol L}</math> in Eq.(44b). These terms emanate from Eq.(40) in the fractional step scheme by making <math display="inline">\alpha =1</math> and <math display="inline">\bar{\boldsymbol p}^{n}\equiv \bar{\boldsymbol p}^{n+1,i}</math>. This idea was originally proposed by Codina <span id='citeF-52'></span>[[#cite-52|[52]]] and it is here extended in the context of the FIC formulation.
792
793
===4.5 Stokes flow===
794
795
The formulation for a Stokes flow can be readily obtained simply by neglecting the convective terms in the general Navier-Stokes formulation. This also implies neglecting the convective stabilization terms in the momentum equations and, consequently, the convective projection variables are not larger necessary. Also the intrinsic time parameters <math display="inline">\tau _i</math> take now the simpler form (see Eq.(18)):
796
797
{| class="formulaSCP" style="width: 100%; text-align: left;" 
798
|-
799
| 
800
{| style="text-align: left; margin:auto;width: 100%;" 
801
|-
802
| style="text-align: center;" | <math>\tau _i={3h_i^2\over 8\mu } </math>
803
|}
804
| style="width: 5px;text-align: right;white-space: nowrap;" | (45)
805
|}
806
807
The resulting discretized system of equations can be written as (see Eqs.(30))
808
809
{| class="formulaSCP" style="width: 100%; text-align: left;" 
810
|-
811
| 
812
{| style="text-align: left; margin:auto;width: 100%;" 
813
|-
814
| style="text-align: center;" | <math>\begin{array}{l}\displaystyle {\boldsymbol M}\dot{\bar {\boldsymbol u}} + {\boldsymbol K}\bar{\boldsymbol u} - {\boldsymbol G}\bar {\boldsymbol p}={\boldsymbol f}\\  \displaystyle {\boldsymbol G}^T \bar {\boldsymbol u} + \hat{\boldsymbol L}\bar {\boldsymbol p}+{\boldsymbol Q}\bar {\boldsymbol \pi }={\boldsymbol 0}\\ \displaystyle {\boldsymbol Q}^T \bar {\boldsymbol p} + \hat {\boldsymbol M}\bar {\boldsymbol \pi }={\boldsymbol 0} \end{array} </math>
815
|}
816
| style="width: 5px;text-align: right;white-space: nowrap;" | (46)
817
|}
818
819
The algorithms of previous section can now be implemented. We note that convergence of the predictor-corrector scheme is now faster due to the absence of the non linear convective terms in the momentum equation.
820
821
The steady-state form of Eqs.(46) can be expressed in matrix form as
822
823
{| class="formulaSCP" style="width: 100%; text-align: left;" 
824
|-
825
| 
826
{| style="text-align: left; margin:auto;width: 100%;" 
827
|-
828
| style="text-align: center;" | <math>\left[\begin{matrix}{\boldsymbol K}&-{\boldsymbol G}&{\boldsymbol 0}\\  -{\boldsymbol G}^T & - \hat{\boldsymbol L} &-{\boldsymbol Q}\\ {\boldsymbol 0}& -{\boldsymbol Q}^T&-\hat {\boldsymbol M}\\\end{matrix}\right]\left\{\begin{matrix}\bar {\boldsymbol u}\\ \bar {\boldsymbol p}\\ \bar {\boldsymbol \pi }\\\end{matrix}\right\}= \left\{\begin{matrix}{\boldsymbol f}\\ {\boldsymbol 0}\\{\boldsymbol 0}\\ \end{matrix}\right\} </math>
829
|}
830
| style="width: 5px;text-align: right;white-space: nowrap;" | (47)
831
|}
832
833
The system is symmetric and always positive definite and therefore leads to a non singular solution. This property holds for ''any interpolation function'' chosen for <math display="inline">\bar {\boldsymbol u},\bar {\boldsymbol p}</math> and <math display="inline">\bar {\boldsymbol \pi }</math>, therefore overcoming the Babuŝka-Brezzi (BB) restrictions <span id='citeF-1'></span>[[#cite-1|[1]]].
834
835
A reduced velocity-pressure formulation can be obtained by eliminating the pressure gradient projection variables <math display="inline">\bar {\boldsymbol \pi }</math> from the last equation  to give
836
837
{| class="formulaSCP" style="width: 100%; text-align: left;" 
838
|-
839
| 
840
{| style="text-align: left; margin:auto;width: 100%;" 
841
|-
842
| style="text-align: center;" | <math>\left[\begin{matrix}{\boldsymbol K}&-{\boldsymbol G}\\ -{\boldsymbol G}^T & - (\hat{\boldsymbol L} -{\boldsymbol Q}\hat {\boldsymbol M}^{-1}{\boldsymbol Q}^T)\\\end{matrix}\right]\left\{\begin{matrix}\bar {\boldsymbol u}\\ \bar {\boldsymbol p}\\\end{matrix}\right\}= \left\{\begin{matrix}{\boldsymbol f}\\ {\boldsymbol 0}\\\end{matrix}\right\} </math>
843
|}
844
| style="width: 5px;text-align: right;white-space: nowrap;" | (48)
845
|}
846
847
The reduction process is simplified by using a diagonal form of matrix <math display="inline">\hat {\boldsymbol M}</math>. Applications of this scheme to incompressible solid mechanics problems are reported in <span id='citeF-60'></span>[[#cite-60|[60]]].
848
849
==5 FLUID-STRUCTURE INTERACTION. MESH UPDATING. ALE FORMULATION==
850
851
===5.1 General coupled solution scheme===
852
853
The  algorithms of Section 4 can be readily extended for fluid-structure interaction analysis. The solution process in all  cases involves the two additional steps.
854
855
===Step&nbsp; A1.&nbsp;Solve&nbsp;for&nbsp;the&nbsp;movement&nbsp;of&nbsp;the&nbsp;structure&nbsp;due&nbsp;to&nbsp;the&nbsp;fluidflow&nbsp;forces===
856
857
This implies solving the dynamic equations of motion for the structure written as
858
859
{| class="formulaSCP" style="width: 100%; text-align: left;" 
860
|-
861
| 
862
{| style="text-align: left; margin:auto;width: 100%;" 
863
|-
864
| style="text-align: center;" | <math>{\boldsymbol M}_s \ddot {\boldsymbol d}+ {\boldsymbol K}_s {\boldsymbol d}={\boldsymbol f}_{ext} </math>
865
|}
866
| style="width: 5px;text-align: right;white-space: nowrap;" | (49)
867
|}
868
869
where <math display="inline">{\boldsymbol d}</math> and <math display="inline">\ddot {\boldsymbol d}</math> are respectively the displacement and acceleration vectors of the nodes discretizing the structure, <math display="inline">{\boldsymbol M}_s</math> and <math display="inline">{\boldsymbol K}_s</math> are the mass and stiffness matrices of the structure and <math display="inline">{\boldsymbol f}_{ext}</math> is the vector of external nodal forces accounting for the fluid flow forces induced by the pressure and the viscous stresses. Clearly the main driving forces for the motion of the structure is the fluid pressure which acts in the form of a surface traction on the structure. Indeed Eq.(49) can be augmented with an appropriate damping term. The form of all the relevant matrices and vectors can be found in standard books on FEM for structural analysis <span id='citeF-1'></span>[[#cite-1|[1]]].
870
871
Solution of Eq.(49) in time can be performed using implicit or fully explicit time integration algorithms. In both cases the values of the nodal displacement, velocities and accelerations at <math display="inline">t^{n+1}</math> are found.
872
873
===Step&nbsp;A2.Computethenew&nbsp;position&nbsp;of&nbsp;the&nbsp;mesh&nbsp;nodes===
874
875
Movement of a structure in a fluid originates a distorsion in the mesh defining the control volume where the fluid equations are solved. Clearly a new mesh can be regenerated at each time step and this option is discussed in a later section dealing with lagrangian flows. A cheaper alternative is to update the position of the mesh nodes once the iterative process for the fluid and solid variables has converged. A simple algorithm for updating the mesh nodes is described  next.
876
877
===5.2 A simple algorithm for updating the mesh nodes===
878
879
Different techniques have been proposed for dealing with mesh updating in fluid-structure interaction problems. The general aim of all methods is to prevent element distortion during mesh deformation.
880
881
Tezduyar ''et al.'' <span id='citeF-54'></span>[[#cite-54|[54]]] and Chiandussi ''et al.'' <span id='citeF-55'></span>[[#cite-55|[55]]] have proposed simple method for  moving the  mesh nodes based on the iterative solution of a fictitious linear elastic problem on the mesh domain. In the method introduced in <span id='citeF-54'></span>[[#cite-54|[54]]], the mesh deformation is handled selectively based on the element sizes and deformation modes, with the objective to increase stiffening of the smaller elements, which are typically located near solid surfaces. In Chiandusi ''et al.'' <span id='citeF-55'></span>[[#cite-55|[55]]] in order to minimize the mesh deformation the “elastic” properties of each mesh element are appropiately selected so that elements suffering greater movements are stiffer. A simple and effective procedure is to select the Poisson's ratio <math display="inline">\nu =0</math> and compute the “equivalent” Young modulus for each element by
882
883
{| class="formulaSCP" style="width: 100%; text-align: left;" 
884
|-
885
| 
886
{| style="text-align: left; margin:auto;width: 100%;" 
887
|-
888
| style="text-align: center;" | <math>E = {\bar E \over 3 \bar  \varepsilon ^2 }(\varepsilon _1^2+\varepsilon _2^2 + \varepsilon _3^2) </math>
889
|}
890
| style="width: 5px;text-align: right;white-space: nowrap;" | (50)
891
|}
892
893
where <math display="inline">\varepsilon _i</math> are the principal strains, <math display="inline">\bar E</math> is an arbitrary value of the Young modulus  and <math display="inline">\bar \varepsilon </math> is a prescribed uniform strain field. <math display="inline">\bar E</math> and <math display="inline">\bar  \varepsilon </math> are constant for all the elements in the  mesh.
894
895
In our work we have adopted the solution scheme proposed by Chiandusi ''et al.'' <span id='citeF-55'></span>[[#cite-55|[55]]]. This basically involves the following two steps.
896
897
''Step 1''. Consider the FE mesh as a linear elastic solid with homogeneous material properties characterized by a prescribed uniform strain field <math display="inline">\bar  \varepsilon </math>, an arbitrary Young modulus <math display="inline">\bar E</math> and <math display="inline">\nu =0</math>. Solve a linear elastic problem with imposed displacements at the mesh boundary defined by the actual movement of the boundary nodes. An approximate solution to this linear elastic problem, such as that given by the first iterations of a conjugate gradient solution scheme, suffices for practical purposes.
898
899
''Step 2''. Compute the principal strains  in each element. Repeat the (approximate) FE solution of the linear elastic problem with prescribed boundary displacements using the values of <math display="inline">E</math> of Eq.(50).
900
901
The  algorithm is able to treat the movement of the mesh due to changes in position of fully submerged and semi-submerged bodies such as ships. However if the floating body intersects the free-surface, the changes in the analysis domain  can be very important as emersion or immersion of significant parts of the body can occur within a time step. A possible solution to this problem is to remesh the analysis domain. However, for most  problems a mapping of the moving surfaces linked to a mesh updating algorithm described above can avoid remeshing <span id='citeF-38'></span>[[#cite-38|[38]]].
902
903
===5.3 ALE formulation===
904
905
The movement of the mesh defining the fluid domain requires accounting for the relative motion of the fluid particles with respect to the moving mesh. This can be dealt with by an arbitrary lagrangian-Eulerian (ALE) formulation. This basically implies redefining the convective transport term in the momentum equation as
906
907
{| class="formulaSCP" style="width: 100%; text-align: left;" 
908
|-
909
| 
910
{| style="text-align: left; margin:auto;width: 100%;" 
911
|-
912
| style="text-align: center;" | <math>v_j {\partial u_i \over \partial x_j}\quad \hbox{with } v_j =u_j - u_j^m </math>
913
|}
914
| style="width: 5px;text-align: right;white-space: nowrap;" | (51)
915
|}
916
917
where <math display="inline">v_j</math> is the relative velocity between the moving mesh and the fluid point and <math display="inline">u_j^m</math> is the velocity of the mesh nodes. This velocity can be simply computed dividing by <math display="inline">\Delta t</math> the displacement vector of the nodes in the mesh obtained from the mesh updating algorithm previously described.
918
919
==6 FREE SURFACE WAVE EFFECTS==
920
921
Many problems of practical importance involve a free surface in the fluid. In general the position of such a free surface is unknown and has to be determined. Typical problems of this kind are water flow around ships, flow under and over water control structures, mould filling processes, etc.
922
923
On the free surface <math display="inline">\Gamma _\beta </math> we must ensure al all times that (1) the pressure (which approximates the normal traction) equals the atmospheric pressure <math display="inline">p_a</math> and the tangential tractions are zero (unless specific otherwise) and (2) that the material particles of the fluid belong to the free surface <span id='citeF-41'></span>[[#cite-41|[41]]].
924
925
Condition (1) is simply fulfilled by imposing <math display="inline">p=p_a</math> on <math display="inline">\Gamma _\beta </math> during the solution for the nodal pressures.
926
927
The free surface condition (2) can be written in the FIC formulation  (neglecting time stabilization effects) as <span id='citeF-38'></span>[[#cite-38|[38]]]
928
929
{| class="formulaSCP" style="width: 100%; text-align: left;" 
930
|-
931
| 
932
{| style="text-align: left; margin:auto;width: 100%;" 
933
|-
934
| style="text-align: center;" | <math>r_\beta - \underline{{1\over 2} h_{\beta _j} {\partial r_\beta  \over \partial x_j}}{1\over 2} h_{\beta _j} {\partial r_\beta  \over \partial x_j}=0\quad ,\quad  j=1,2 </math>
935
|}
936
| style="width: 5px;text-align: right;white-space: nowrap;" | (52)
937
|}
938
939
where
940
941
{| class="formulaSCP" style="width: 100%; text-align: left;" 
942
|-
943
| 
944
{| style="text-align: left; margin:auto;width: 100%;" 
945
|-
946
| style="text-align: center;" | <math>r_\beta := {\partial \beta  \over \partial t}+v_i {\partial \beta  \over \partial x_i}-v_3 \quad ,\quad i=1,2 </math>
947
|}
948
| style="width: 5px;text-align: right;white-space: nowrap;" | (53)
949
|}
950
951
where <math display="inline">\beta </math> is the wave elevation (measured with respect to a reference surface of height <math display="inline">\beta _{ref}</math>) and <math display="inline">v_i</math> is the relative velocity defined in Eq.(51). The underlined term in Eq.(52) introduces the necessary stabilization for the solution of the highly convective (and non linear) equation defining the evolution of the wave elevation.
952
953
The solution in time of Eq.(52) can be expressed in terms of the nodal velocities computed from the flow solution, as
954
955
{| class="formulaSCP" style="width: 100%; text-align: left;" 
956
|-
957
| 
958
{| style="text-align: left; margin:auto;width: 100%;" 
959
|-
960
| style="text-align: center;" | <math>\beta ^{n+1} = \beta ^n -\Delta t \left[v_i^{n+1} {\partial \beta ^n \over \partial x_i}-v_3^{n+1}-{h_{\beta _i}\over 2} {\partial r_\beta ^n \over \partial x_i}\right]\quad ,\quad  i=1,2 </math>
961
|}
962
| style="width: 5px;text-align: right;white-space: nowrap;" | (54)
963
|}
964
965
Eq.(54) can now be discretized in space using the standard Galerkin method and solved ''explicitely'' to give the nodal wave heights at <math display="inline">t^{n+1}</math> <span id='citeF-38'></span>[[#cite-38|[38]]]. This solution step  preceeds the computation of the structure motion in the case of a fluid-structure interaction problem. Typically the general algorithm is as follows:
966
967
<ol>
968
969
<li>Solve for the nodal velocities <math display="inline">\bar{\boldsymbol u}^{n+1}</math> and the nodal pressures <math display="inline">\bar {\boldsymbol p}^{n+1}</math> in the fluid domain using any of the algorithms of Section 4. When solving for the pressure variables impose <math display="inline">p^{n+1}=p_a</math> at the free surface <math display="inline">\Gamma _\beta </math>. </li>
970
<li>Solve for the free surface elevation <math display="inline">\beta ^{n+1}</math> via Eq.(54). </li>
971
<li>Compute the movement of the fully or semi-submerged or floating structure by solving the dynamic equations of motion of the structure (Eq.(49)). </li>
972
<li>Compute the new position of the mesh nodes in the fluid domain at time <math display="inline">t^{n+1}</math>. Alternatively, regenerate a new mesh. </li>
973
974
</ol>
975
976
The mesh updating proces can also include the free surface nodes, although this is not strictly necessary. An ''hydrostatic adjustement'' can be implemented once the new free surface elevation is computed by simple imposing the pressure at the nodes on the reference surface as
977
978
{| class="formulaSCP" style="width: 100%; text-align: left;" 
979
|-
980
| 
981
{| style="text-align: left; margin:auto;width: 100%;" 
982
|-
983
| style="text-align: center;" | <math>p^{n+1}=p_a + \rho \vert g\vert \Delta \beta \quad \hbox{with } \Delta \beta = \beta ^{n+1}- \beta _{ref} </math>
984
|}
985
| style="width: 5px;text-align: right;white-space: nowrap;" | (55)
986
|}
987
988
where <math display="inline">g</math> is the  gravity constant. Eq.(55) allows to take into account the changes in the free surface without the need of updating the reference surface nodes. A higher accuracy in the solution of the flow problem can be obtained by updating the reference surface nodes after a number of time steps <span id='citeF-41'></span>[[#cite-41|[41]]].
989
990
==7 TURBULENCE MODELLING==
991
992
The  discussion of the treatment of turbulent effects in the flow equations in the Eulerian and ALE formulations  falls outside the objective of this paper as many of the existing turbulence models are applicable.
993
994
In the examples presented in the paper we have chosen a turbulence model based on the Reynolds averaged Navier-Stokes equations where the deviatoric stresses are computed as sum of the standard viscous contributions and the so called Reynolds stresses. Here we have chosen the Boussinesq assumption leading to a modification of the viscosity in the standard Navier-Stokes equations as sum of the “physical” viscosity <math display="inline">\mu </math> and a turbulent viscosity <math display="inline">\mu _T</math>.
995
996
For the definition of <math display="inline">\mu _T</math> many options are possible such as the one and two equations turbulence models (i.e. the <math display="inline">k</math> model and the <math display="inline">k - \varepsilon </math> and <math display="inline">k - w</math> models) and the algebraic stress models, among others <span id='citeF-56'></span>[[#cite-56|[56]]].
997
998
==8 LAGRANGIAN FLOW FORMULATION==
999
1000
The Lagrangian formulation is an effective (and relatively simple) procedure for modelling the flow of fluid particles undergoing severe distorsions such as water jets, high amplitude waves, water splashing, breaking waves, filling of cavities, etc. Indeed the Lagrangian formulation is also an excellent procedure for treating fluid-structure interaction problems where the structure has large displacements. An obvious “a priori” advantage of the Lagrangian formulation is that both the structure and the fluid motions are defined in the same frame of reference.
1001
1002
The Lagrangian fluid flow equations can be simply obtained by noting that the velocity of the mesh nodes and that of the fluid particles are the same. Hence the relative velocity <math display="inline">v_i</math> is zero in Eq.(51) and the convective terms vanish in the momentum equations, while the rest of the fluid flow equations remain unchanged. The resulting governing equations have an identical form as those of the Stokes flow problem, with the motion of the flow particles being referred now to a Lagrangian coordinate frame.
1003
1004
The FEM algorithms for solving the Lagrangian flow equations are very similar to those for the Eulerian or ALE descriptions presented earlier. For preciseness we present a particular class of Lagrangian formulation  to solve problems involving the interaction between free surface flows  and solids in a unified manner. The approach, called the ''particle finite element method'' (PFEM) treats the mesh nodes in the fluid and solid domains as  dimensionless particles which can freely move and even separate from the main fluid domain representing, for instance, the effect of water drops. A finite element mesh connects the nodes defining the discretized domain where the governing equations are solved in the standard FEM fashion. The PFEM is the natural evolution of recent work of the authors for  the solution of FSI problems using Lagrangian finite element and meshless methods <span id='citeF-44'></span>[[#cite-44|[44]]].
1005
1006
===8.1 The Particle Finite Element Method (PFEM)===
1007
1008
As mentioned in the previous section in the PFEM approach both the fluid and the solid domains are modelled using a Lagrangian formulation. The finite element method (FEM) is used to solve the continuum equations in both domains. Hence a mesh discretizing these domains must be generated in order to solve the governing equations for both the fluid and solid problems in the standard FEM fashion. We note  that the nodes discretizing the fluid and solid domains can be viewed as material points which motion is tracked during the transient solution.
1009
1010
The Lagrangian formulation allows to track the motion of each  single fluid point (a node). This is useful to model the separation of water particles from the main fluid domain and to follow their subsequent motion as individual dimensionless particles with an initial velocity and subject to gravity forces.
1011
1012
The quality of the numerical solution   depends on the discretization chosen as in the standard FEM. Adaptive mesh refinement techniques can be used to improve the solution in zones where large motions of the fluid or the structure occur.
1013
1014
For each time increment the PFEM involves the following steps.
1015
1016
<ol>
1017
1018
<li>Starting with an initial collection of points (nodes), identify the external boundaries for both the fluid and solid domains. This is  an essential step as some boundaries (such as the free surface in fluids) may be severely distorted during the solution process including separation and re-entring of nodes. The Alpha Shape method <span id='citeF-57'></span>[[#cite-57|[57]]] is used for the boundary definition. </li>
1019
<li>Discretize the fluid and solid domains with a finite element mesh. For the mesh generation process we use and extended Delaunay technique   <span id='citeF-50'></span>[[#cite-50|[50]]].  </li>
1020
<li>Solve the coupled Lagrangian equations of motion for  the fluid and the solid domains. Compute the relevant state variables in both domains at each time step: velocities, pressure and viscous stresses in the fluid and displacements, stresses and strains in the solid.  </li>
1021
1022
The solution scheme chosen in this work is a generalization of the fractional step algorithm of Section 4.2. In summary the solution steps are the following.
1023
1024
''Step 3.1'' Compute the predicted velocities (viz, Eq.(39) for <math display="inline">\alpha =1</math> and <math display="inline">{\boldsymbol C}= {\boldsymbol 0}</math>)
1025
1026
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1027
|-
1028
| 
1029
{| style="text-align: left; margin:auto;width: 100%;" 
1030
|-
1031
| style="text-align: center;" | <math>
1032
1033
\tilde{\boldsymbol u}^{n+1,i+1} = \bar{\boldsymbol u}^n - \Delta t {\boldsymbol M}^{-1}_d [{\boldsymbol K} \bar{\boldsymbol u}^{n} - {\boldsymbol G}\bar {\boldsymbol p}^{n} -{\boldsymbol f}^{n+1}] </math>
1034
|}
1035
| style="width: 5px;text-align: right;white-space: nowrap;" | (56)
1036
|}
1037
1038
''Step 3.2'' Compute <math display="inline">\bar {\boldsymbol p}^{n+1,i+1}</math> from Eq.(40) for <math display="inline">\alpha =1</math>.
1039
1040
<br/>
1041
1042
''Step 3.3'' Compute explicitely <math display="inline"> \bar{\boldsymbol u}^{n+1,i+1}</math> from Eq.(41) with <math display="inline">\alpha =1</math>.
1043
1044
<br/>
1045
1046
''Step 3.4'' Compute <math display="inline"> \bar{\boldsymbol \pi }^{n+1,i+1}</math> explicitely from Eq.(43).
1047
1048
<br/>
1049
1050
''Step 3.5'' Solve for the motion of the structure by integrating Eq.(51).
1051
1052
<br/>
1053
1054
''Step 3.6'' Estimate a new position of the mesh nodes in terms of the time increment size as
1055
1056
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1057
|-
1058
| 
1059
{| style="text-align: left; margin:auto;width: 100%;" 
1060
|-
1061
| style="text-align: center;" | <math>
1062
1063
{\boldsymbol x}_j^{n+1,i+1} = {\boldsymbol x}_j^{n}+\bar {\boldsymbol u}_j^{n+1,i+1} \Delta t </math>
1064
|}
1065
| style="width: 5px;text-align: right;white-space: nowrap;" | (57)
1066
|}
1067
1068
where index <math display="inline">j</math> denotes the node number.
1069
1070
It is important to note that all matrices in Steps 3.1&#8211;3.5 are evaluated at the last predicted configuration <math display="inline">\Omega ^{n+1,i}</math>.
1071
<li>In steps 3.1&#8211;3.6 superindex <math display="inline">i</math> denotes the iteration within a time increment.  </li>
1072
1073
<br/>
1074
1075
''Step 3.7'' Check the convergence of the velocity and pressure fields in the fluid and the displacements strains and stresses in the structure. If convergence is achieved frozen the final position of the mesh nodes and move to the next time increment, otherwise return to step 3.1 for the next iteration.
1076
1077
<li>Go back to step 1 and repeat the solution process for the next time increment.  </li>
1078
1079
</ol>
1080
1081
Above algorithm can be found to be analogous to the standard ''updated lagrangian'' scheme typically used in non linear solid mechanics problems <span id='citeF-1'></span>[[#cite-1|[1]]].
1082
1083
Despite the motion of the nodes within the iterative process, in general there is no need to regenerate the mesh at each iteration. ''In the examples presented in the paper the mesh in the fluid domain has been regenerated at each time increment''. A cheaper alternative is to generate a new mesh only after a prescribed number of converged time increments, or when  the nodal displacements induce significant geometrical distorsions in some elements.
1084
1085
The boundary conditions are applied as described in Section 4.2.
1086
1087
In the examples presented in the paper the time increment size has been chosen as
1088
1089
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1090
|-
1091
| 
1092
{| style="text-align: left; margin:auto;width: 100%;" 
1093
|-
1094
| style="text-align: center;" | <math>\Delta t =\min (\Delta t_i ) \quad \hbox{with}\quad \Delta t_i ={\vert {\boldsymbol v}\vert \over h_i^{\min }} </math>
1095
|}
1096
| style="width: 5px;text-align: right;white-space: nowrap;" | (58)
1097
|}
1098
1099
where <math display="inline">h_i^{\min }</math> is the distance between node <math display="inline">i</math> and the closest node in the mesh.
1100
1101
===8.2 Treatment of contact between fluid and solid interfaces===
1102
1103
The  condition of prescribed velocities or pressures at the solid boundaries in the PFEM are  applied in strong form to the boundary nodes. These nodes might belong to fixed external boundaries or to moving boundaries linked to the interacting solids. In some problems it is useful to define a layer of nodes adjacent to the external boundary in the fluid where the condition of prescribed velocity is imposed. These nodes typically remain fixed during the solution process. Contact between water particles and the solid boundaries is accounted for by the incompressibility condition which ''naturally prevents the water nodes to penetrate into the solid boundaries''. This simple way to treat the water-wall contact is another attractive feature of the PFEM.
1104
1105
===8.3 Generation of a new mesh===
1106
1107
One of the key points for the success of the PFEM  is the fast regeneration of a mesh at every time step on the basis of the position of the nodes in the space domain. As mentioned previously, in our work the mesh is generated using the so called extended Delaunay tesselation (EDT) <span id='citeF-50'></span>[[#cite-50|[50]]]. The EDT allows one to generate non standard meshes combining elements of  arbitrary polyhedrical shapes  (triangles, quadrilaterals and other polygons in 2D and tetrahedra, hexahedra and arbitrary polyhedra in 3D) in a computing time of order <math display="inline">n</math>, where <math display="inline">n</math> is the total number of nodes in the mesh. The <math display="inline">C^\circ </math> continuous shape functions of the elements are obtained using the so called ''meshless finite element interpolation'' (MFEM) <span id='citeF-49'></span>[[#cite-49|[49]]].
1108
1109
===8.4 Identification of boundary surfaces===
1110
1111
One of the main tasks  in the PFEM is the correct definition of the boundary domain. Sometimes, boundary nodes are explicitly marked  differently from internal nodes. In other cases, the total set of nodes is the only information available and the algorithm must recognize the boundary nodes.
1112
1113
Considering that the nodes follow a variable <math display="inline">h(x)</math>  distribution, where <math display="inline">h(x)</math> is the minimum distance between two nodes, the following criterion has been used. ''All nodes on an empty sphere with a radius  greater than <math>\alpha h</math>, are considered as boundary nodes''. In practice, <math display="inline">\alpha </math>  is a parameter close to, but greater than one. This criterion coincides with the Alpha Shape concept <span id='citeF-46'></span>[[#cite-46|[46]]].
1114
1115
In this work, the boundary surface is defined by  all the polyhedral surfaces (or polygons in 2D) having all their nodes on the boundary and belonging to just one polyhedron.
1116
1117
The method  also allows to identify isolated fluid particles outside the main fluid domain. These particles are treated as part of the external boundary where the pressure is fixed to the atmospheric value.
1118
1119
Figure 2 shows a schematic example of the process to identify individual particles (or a group of particles) starting from a given collection of nodes.
1120
1121
<div id='img-2'></div>
1122
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1123
|-
1124
|[[Image:Draft_Samper_881612373-Figure5.png|450px|Identification of individual particles (or a group of particles) starting from a given collection of nodes using the Alpha Shape method.]]
1125
|- style="text-align: center; font-size: 75%;"
1126
| colspan="1" | '''Figure 2:''' Identification of individual particles (or a group of particles) starting from a given collection of nodes using the Alpha Shape method.
1127
|}
1128
1129
==9 COMPUTATION OF THE CHARACTERISTIC LENGTHS==
1130
1131
The evaluation of the stabilization parameters is one of the crucial issues in stabilized methods. Excellent results have been obtained in all problems solved  using linear  elements with the characteristic length vector  defined by
1132
1133
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1134
|-
1135
| 
1136
{| style="text-align: left; margin:auto;width: 100%;" 
1137
|-
1138
| style="text-align: center;" | <math>{\boldsymbol h}=h_s {{\boldsymbol u}\over {u}}+h_{c} {{\boldsymbol \nabla } u\over \vert{\boldsymbol \nabla }u\vert } </math>
1139
|}
1140
| style="width: 5px;text-align: right;white-space: nowrap;" | (59)
1141
|}
1142
1143
where <math display="inline">u=\vert {\boldsymbol u}\vert </math> and <math display="inline">h_s</math> and <math display="inline">h_{c}</math> are the “streamline” and “cross wind” contributions given by
1144
1145
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1146
|-
1147
| 
1148
{| style="text-align: left; margin:auto;width: 100%;" 
1149
|-
1150
| style="text-align: center;" | <math>h_s=\max ({\boldsymbol l}^T_j {\boldsymbol u})/{u} </math>
1151
| style="width: 5px;text-align: right;white-space: nowrap;" | (60)
1152
|-
1153
| style="text-align: center;" | <math> h_{c}=\max ({\boldsymbol l}^T_j {\boldsymbol \nabla }u)/ \vert {\boldsymbol \nabla }u\vert \quad , \quad  j=1,n_s </math>
1154
| style="width: 5px;text-align: right;white-space: nowrap;" | (61)
1155
|}
1156
|}
1157
1158
where <math display="inline">{\boldsymbol l}_j</math> are the vectors defining the element sides (<math display="inline">n_s=6</math> for tetrahedra).
1159
1160
As for the free surface equation in the ALE formulation the following value of the characteristic length vector <math display="inline">{\boldsymbol h}_\beta </math> in Eq.(52) has been taken
1161
1162
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1163
|-
1164
| 
1165
{| style="text-align: left; margin:auto;width: 100%;" 
1166
|-
1167
| style="text-align: center;" | <math>{\boldsymbol h}_\beta =\bar h_s {{\boldsymbol u}\over {u}}+\bar h_c {{\boldsymbol \nabla }\beta \over \vert {\boldsymbol \nabla }\beta \vert }  </math>
1168
|}
1169
| style="width: 5px;text-align: right;white-space: nowrap;" | (62)
1170
|}
1171
1172
The streamline parameter <math display="inline">\bar h_s</math> has been obtained by Eq.(60) using the value of the velocity vector <math display="inline">\boldsymbol u</math> over the 3 node triangles discretizing the free surface and <math display="inline">n_s=3</math>.
1173
1174
The cross wind parameter <math display="inline">\bar h_c</math> has been computed by
1175
1176
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1177
|-
1178
| 
1179
{| style="text-align: left; margin:auto;width: 100%;" 
1180
|-
1181
| style="text-align: center;" | <math>\bar h_c = \max [{\boldsymbol l}_j^T {\boldsymbol \nabla }\beta ] {1\over \vert {\boldsymbol \nabla }\beta \vert } \quad ,\quad j=1,2,3 </math>
1182
|}
1183
| style="width: 5px;text-align: right;white-space: nowrap;" | (63)
1184
|}
1185
1186
The cross-wind terms in eqs.(59) and (63) account for the effect of the gradient of the solution in the stabilization parameters. This is a standard assumption in most “shock-capturing” stabilization procedures <span id='citeF-58'></span>[[#cite-58|[58]]].
1187
1188
==10 EXAMPLES==
1189
1190
The examples chosen show the applicability of the Eulerian, ALE and Lagrangian  (PFEM) formulations presented to solve fluid flow problems.  The first two examples are typical flow problems solved with the standard Eulerian formulation using the predictor-corrector scheme of Section 4.4 with <math display="inline">\theta = 1</math>. The first example is the flow of an inviscid fluid past a cylinder.  Then the standard problem of flow past a NACA airfoil is solved with mesh adaptivity.
1191
1192
The next two examples fall within the category of ship hydrodynamics problems solved with the ALE formulation and the fractional step scheme of Section 4.2 with <math display="inline">\alpha =1</math>. The examples are the analysis of  a scale model of a commercial ship and of an American Cup racing sail boat.  In both cases the free surface equation is solved together with the flow equations as described in Section 6. Numerical results are compared with experimental data.
1193
1194
The last series of examples show applications of the Lagrangian PFEM formulation to the simulation of the collapse of a water column, a sloshing problem, a ship hit by a wave, a solid cube falling into a water recipient and a mixing problem.
1195
1196
===10.1 Inviscid flow past a cylinder===
1197
1198
The problem was solved with the mesh of 10096 linear triangles shown in Figure 3. The initial conditions were an horizontal velocity of value one and zero pressure. A value of  the Reynolds number of infinity was taken. The solution was progressed in time until steady state was found. The “correct” solution in this case is a symmetric velocity and pressure field.
1199
1200
The steady state results in Figure 4 show the relevance of accounting for the convective projection terms in the momentum equations. Results for the velocity and pressure contours shown in Figure 5  were obtained with the formulation described in the paper, whereas the results shown in Figure 6 were obtained by neglecting the convective projection terms (i.e. neglecting the terms involving the <math display="inline">\boldsymbol c</math> variables in Eq.(44a) and skipping the solution of Eq.(44c)). It can be clearly seen that neglecting the convective projection terms leads to a deterioration of the results in the region  behind the cylinder where some oscillations for the pressure and velocity fields are found. These oscillations disappear and the correct symmetric solution is found if the convective projection terms are taken into account as described in the paper.
1201
1202
Evidence of the importance of taking into account the pressure gradient projection terms for the accuracy of the incompressible solution has also been found as reported in <span id='citeF-60'></span>[[#cite-60|[60]]].
1203
1204
<div id='img-3'></div>
1205
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1206
|-
1207
|[[File:Draft_Samper_881612373_3747_Figure3.jpg|450px|Inviscid flow past a cylinder. Mesh of 10.096 three node triangles.]]
1208
|- style="text-align: center; font-size: 75%;"
1209
| colspan="1" | '''Figure 3:''' Inviscid flow past a cylinder. Mesh of 10.096 three node triangles.
1210
|}
1211
1212
<div id='img-4'></div>
1213
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1214
|-
1215
|[[Image:Draft_Samper_881612373-fig4a.png|600px|]]
1216
|[[Image:Draft_Samper_881612373-fig4b.png|600px|Contours of velocity (upper picture and pressure) obtained accounting for the convective projection terms]]
1217
|- style="text-align: center; font-size: 75%;"
1218
| colspan="2" | '''Figure 4:''' Contours of velocity (upper picture and pressure) obtained accounting for the convective projection terms
1219
|}
1220
1221
<div id='img-5'></div>
1222
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1223
|-
1224
|[[Image:Draft_Samper_881612373-fig5a.png|600px|]]
1225
|[[Image:Draft_Samper_881612373-fig5b.png|600px|Contours of velocity (upper picture and pressure) obtained  not taking into account the convective projection terms]]
1226
|- style="text-align: center; font-size: 75%;"
1227
| colspan="2" | '''Figure 5:''' Contours of velocity (upper picture and pressure) obtained  not taking into account the convective projection terms
1228
|}
1229
1230
<div id='img-6'></div>
1231
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1232
|-
1233
|[[Image:Draft_Samper_881612373-fig1.png|600px|Viscous flow past a NACA airfoil. Characteristic length =1m, Re=100. Original mesh]]
1234
|- style="text-align: center; font-size: 75%;"
1235
| colspan="1" | '''Figure 6:''' Viscous flow past a NACA airfoil. Characteristic length =1m, <math>Re=100</math>. Original mesh
1236
|}
1237
1238
===10.2 Flow past a NACA airfoil. Adaptative solution===
1239
1240
The problem is the analysis of a viscous flow past a NACA 12 airfoil. This example sows the performance of the viscous FIC formulation with a mesh refinement scheme. The initial  mesh of 2574 nodes and 4784 linear triangular elements is shown in Figure 6. The problem is solved for a value of the Reynolds number of 100.
1241
1242
The mesh refinement algorithm is based on the equidistribution of the global error over the finite element mesh. The error estimation method  is based on the evaluation of the energy rate (the power) of the FE residuals of the momentum and the incompressibility equations. The residuals are computed using recovered values of the derivatives and pressure variables obtained via a  nodal derivative recovery technique. A nodal-based approach is used for computing the residual power integrals <span id='citeF-64'></span>[[#cite-64|[64]]]. The refinement was performed at a time <math display="inline">t=2</math>s during the transient solution process. The resultant mesh after five refinement steps is shown in  Figures 7 and Figure 8. The corresponding velocity field contours are shown in Figures 9  and 10.
1243
1244
<div id='img-7'></div>
1245
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1246
|-
1247
|[[Image:Draft_Samper_881612373-fig2.png|470px|Mesh obtained after five refinement steps using the equidistribution of the global error.]]
1248
|- style="text-align: center; font-size: 75%;"
1249
| colspan="1" | '''Figure 7:''' Mesh obtained after five refinement steps using the equidistribution of the global error.
1250
|}
1251
1252
<div id='img-8'></div>
1253
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1254
|-
1255
|[[Image:Draft_Samper_881612373-fig3.png|300px|]]
1256
|[[Image:Draft_Samper_881612373-fig3_b.png|300px|Details of the refined mesh of Figure 7 in the vecinity of the airfoil]]
1257
|- style="text-align: center; font-size: 75%;"
1258
| colspan="2" | '''Figure 8:''' Details of the refined mesh of Figure 7 in the vecinity of the airfoil
1259
|}
1260
1261
<div id='img-9'></div>
1262
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1263
|-
1264
|[[Image:Draft_Samper_881612373-naca_line_1.png|530px|Velocity field after five refinement steps]]
1265
|- style="text-align: center; font-size: 75%;"
1266
| colspan="1" | '''Figure 9:''' Velocity field after five refinement steps
1267
|}
1268
1269
<div id='img-10'></div>
1270
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1271
|-
1272
|[[Image:Draft_Samper_881612373-naca_line_2.png|530px|Detail of the velocity field of Figure 9]]
1273
|- style="text-align: center; font-size: 75%;"
1274
| colspan="1" | '''Figure 10:''' Detail of the velocity field of Figure 9
1275
|}
1276
1277
1278
Table 1 shows the value of the global error computed as the percentage of the energy rate of the FE residuals (<math display="inline">\Vert P\Vert _\Omega </math>)  versus the total energy rate <math display="inline">U</math>, the errors in the drag and lift values and the number of elements and nodes during the mesh refinement process.
1279
1280
Further examples of  mesh adaptivity in incompressible flows using the FIC formulation can be found in <span id='citeF-64'></span>[[#cite-64|[64]]].
1281
1282
1283
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
1284
|+ style="font-size: 75%;" |Table. 1 Flow past a NACA airfoil. Convergence of the global error  with the mesh refinement
1285
|- style="border-top: 2px solid;"
1286
| style="border-left: 2px solid;border-right: 2px solid;" |  Mesh 
1287
| style="border-left: 2px solid;border-right: 2px solid;" | Global error <math display="inline">\left({\Vert P\Vert _\Omega \over U}\right)</math>(%)  
1288
| style="border-left: 2px solid;border-right: 2px solid;" | Nodes 
1289
| style="border-left: 2px solid;border-right: 2px solid;" | Elements
1290
| style="border-left: 2px solid;border-right: 2px solid;" | Drag error %
1291
| style="border-left: 2px solid;border-right: 2px solid;" | Lift error% 
1292
|- style="border-top: 2px solid;"
1293
| style="border-left: 2px solid;border-right: 2px solid;" |  1
1294
| style="border-left: 2px solid;border-right: 2px solid;" | 5.55
1295
| style="border-left: 2px solid;border-right: 2px solid;" | 2574
1296
| style="border-left: 2px solid;border-right: 2px solid;" | 4784
1297
| style="border-left: 2px solid;border-right: 2px solid;" | 29.1810942 
1298
| style="border-left: 2px solid;border-right: 2px solid;" | 2.99902143
1299
|- style="border-top: 2px solid;"
1300
| style="border-left: 2px solid;border-right: 2px solid;" |  2
1301
| style="border-left: 2px solid;border-right: 2px solid;" | 2.93
1302
| style="border-left: 2px solid;border-right: 2px solid;" | 5340
1303
| style="border-left: 2px solid;border-right: 2px solid;" | 10680
1304
| style="border-left: 2px solid;border-right: 2px solid;" | 28.7443059
1305
| style="border-left: 2px solid;border-right: 2px solid;" | 2.5500113
1306
|- style="border-top: 2px solid;"
1307
| style="border-left: 2px solid;border-right: 2px solid;" |  3
1308
| style="border-left: 2px solid;border-right: 2px solid;" | 2.87
1309
| style="border-left: 2px solid;border-right: 2px solid;" | 7942
1310
| style="border-left: 2px solid;border-right: 2px solid;" | 15884
1311
| style="border-left: 2px solid;border-right: 2px solid;" | 22.1078024
1312
| style="border-left: 2px solid;border-right: 2px solid;" | 2.00851784
1313
|- style="border-top: 2px solid;"
1314
| style="border-left: 2px solid;border-right: 2px solid;" |  4
1315
| style="border-left: 2px solid;border-right: 2px solid;" | 2.77
1316
| style="border-left: 2px solid;border-right: 2px solid;" | 11948
1317
| style="border-left: 2px solid;border-right: 2px solid;" | 23896
1318
| style="border-left: 2px solid;border-right: 2px solid;" | 15.2893198
1319
| style="border-left: 2px solid;border-right: 2px solid;" | 1.54898957
1320
|- style="border-top: 2px solid;"
1321
| style="border-left: 2px solid;border-right: 2px solid;" |  5
1322
| style="border-left: 2px solid;border-right: 2px solid;" | 1.81
1323
| style="border-left: 2px solid;border-right: 2px solid;" | 17142
1324
| style="border-left: 2px solid;border-right: 2px solid;" | 34284
1325
| style="border-left: 2px solid;border-right: 2px solid;" | 10.6478917
1326
| style="border-left: 2px solid;border-right: 2px solid;" | 1.17033653
1327
|- style="border-top: 2px solid;"
1328
| style="border-left: 2px solid;border-right: 2px solid;" |  6
1329
| style="border-left: 2px solid;border-right: 2px solid;" | 1.81
1330
| style="border-left: 2px solid;border-right: 2px solid;" | 17255
1331
| style="border-left: 2px solid;border-right: 2px solid;" | 34510
1332
| style="border-left: 2px solid;border-right: 2px solid;" | 8.54878424
1333
| style="border-left: 2px solid;border-right: 2px solid;" | 1.02567233
1334
|- style="border-top: 2px solid;border-bottom: 2px solid;"
1335
| style="border-left: 2px solid;border-right: 2px solid;" |  7
1336
| style="border-left: 2px solid;border-right: 2px solid;" | 1.71
1337
| style="border-left: 2px solid;border-right: 2px solid;" | 17372
1338
| style="border-left: 2px solid;border-right: 2px solid;" | 34744
1339
| style="border-left: 2px solid;border-right: 2px solid;" | 6.93290243
1340
| style="border-left: 2px solid;border-right: 2px solid;" | 0.86514698
1341
1342
|}
1343
1344
===10.3 KVLCC2 hull model===
1345
1346
The example is the analysis of the so called KVLCC2 benchmark model proposed by the Korean Research Institute of Ship and Ocean Engineering (KRISO) <span id='citeF-64'></span>[[#cite-64|[64]]]. Here a partially wetted tramsom stern is expected due to the low Froude number of the test. Figure&nbsp;11 shows the NURBS geometry of the ship provided by KRISO. The obtained results are compared with the experimental data available  <span id='citeF-65'></span>[[#cite-65|[65]]].
1347
1348
<div id='img-11'></div>
1349
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1350
|-
1351
|[[Image:Draft_Samper_881612373-KCSgeo.png|600px|KVLCC2 model. Geometrical definition based on NURBS surfaces.]]
1352
|- style="text-align: center; font-size: 75%;"
1353
| colspan="1" | '''Figure 11:''' KVLCC2 model. Geometrical definition based on NURBS surfaces.
1354
|}
1355
1356
1357
The smallest element size used was 0.001 m and the largest 0.50 m.  The surface mesh chosen  is shown in Figure 12. A total of 550000 tetrahedra were used to model the virtual towing basin.  The two following test cases were analyzed.
1358
1359
<div id='img-12'></div>
1360
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1361
|-
1362
|[[Image:Draft_Samper_881612373-KCSmesh.png|600px|KVLCC2 model. Surface mesh used in the analysis.]]
1363
|- style="text-align: center; font-size: 75%;"
1364
| colspan="1" | '''Figure 12:''' KVLCC2 model. Surface mesh used in the analysis.
1365
|}
1366
1367
1368
''Test 1.-'' ''Wave pattern calculation''.  The main characteristics of the analysis are listed below:
1369
1370
* Length: 5.52 m, Beam (at water plane): 0.82 m, Draught: 0.18 m, Wetted Surface: <math display="inline">8.08 m^2</math>.
1371
* Velocity: 1.05 m/sec, Froude Number: 0.142.
1372
* Viscosity: <math display="inline">0.00126 Kg/m\cdot sec</math>, Density: <math display="inline">1000 Kg/m^3</math>, Reynolds number: <math display="inline">4.63\times 10^6</math>.
1373
1374
The turbulence model chosen in this case was the <math display="inline">K</math> model. Figures 13 and 14 show the wave profiles on the hull and in  a cut at y/L = 0.082 compared to the experimental data.  The numerical results are quantitatively good close to the hull. A loss of accuracy is observed in the profiles away from the hull. This is probably due to the fact that the element sizes are not small enough in this area.
1375
1376
<div id='img-13'></div>
1377
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1378
|-
1379
|[[Image:Draft_Samper_881612373-KCSprof1.png|600px|KVLCC2 model. Wave profile on the hull compared to experimental data. Thick line shows numerical results]]
1380
|- style="text-align: center; font-size: 75%;"
1381
| colspan="1" | '''Figure 13:''' KVLCC2 model. Wave profile on the hull compared to experimental data. Thick line shows numerical results
1382
|}
1383
1384
<div id='img-14'></div>
1385
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1386
|-
1387
|[[Image:Draft_Samper_881612373-KCSprof2.png|600px|KVLCC2 model. Wave profile on a cut at y/L=0.0964 compared to experimental data <span id='citeF-64'></span>[[#cite-64|64]]. Thick line shows numerical results]]
1388
|- style="text-align: center; font-size: 75%;"
1389
| colspan="1" | '''Figure 14''' 
1390
|}
1391
1392
1393
''Test 2.-'' ''Wake analysis at different planes''. Several turbulence models were used  in order to verify the quality of the results. Here, only the results from the <math display="inline">K-\epsilon </math> model are shown. We note that the velocity maps obtained even for the simplest <math display="inline">Smagorinsky</math> model were qualitatively good, showing the accuracy of the fluid solver scheme used. The main characteristics of this analysis are:
1394
1395
* Length: 2.76 m, Beam (at water plane): 0.41 m, Draught: 0.09 m, Wetted Surface: <math display="inline">2.02 m^2</math>.
1396
* Velocity: 25 m/seg.
1397
* Viscosity: <math display="inline">3.05\cdot 10^{-5} Kg/m\cdot seg</math>, Density: <math display="inline">1.01 Kg/m^3</math>, Reynolds number: <math display="inline">4.63\cdot 10^6</math>.
1398
1399
Figures 15&#8211;16 present results corresponding to the test 2.  Figure 15  shows the contours of the axial (X) component of the velocity on a plane at 2.71 m  from the orthogonal aft. Figure 16 shows the maps of the kinetic energy on this plane. Experimental results are shown for comparison in all cases. Further results for this problem and other similar ones can be found in <span id='citeF-38'></span>[[#cite-38|[38]]].
1400
1401
<div id='img-15'></div>
1402
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1403
|-
1404
|[[Image:Draft_Samper_881612373-KCSvelx1.png|600px|KVLCC2 model. Map of the X component of the velocity on a plane at 2.71 m from the orthogonal aft. Experimental results shown in the right figure.]]
1405
|- style="text-align: center; font-size: 75%;"
1406
| colspan="1" | '''Figure 15:''' KVLCC2 model. Map of the X component of the velocity on a plane at 2.71 m from the orthogonal aft. Experimental results shown in the right figure.
1407
|}
1408
1409
<div id='img-16'></div>
1410
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1411
|-
1412
|[[Image:Draft_Samper_881612373-KCSk.png|600px|KVLCC2 model. Map of the eddy kinetic energy (K) on a plane at 2.71 m from the orthogonal aft. Experimental data shown in the right figure.]]
1413
|- style="text-align: center; font-size: 75%;"
1414
| colspan="1" | '''Figure 16:''' KVLCC2 model. Map of the eddy kinetic energy (<math>K</math>) on a plane at 2.71 m from the orthogonal aft. Experimental data shown in the right figure.
1415
|}
1416
1417
===10.4 American Cup BRAVO ESPAA Model===
1418
1419
The next example is the analysis of the Spanish American Cup racing sail boat ''Bravo España''. The finite element mesh used is shown in Figure 17.  The numerical scheme is the same as that used for the previous example. The results presented in Figures&nbsp;17&#8211;20 correspond to the analysis of a non symmetrical case including appendages. Good comparison between the experimental data and the numerical results was again obtained.
1420
1421
Other results of the hydrodynamic analysis of American Cup racing boats carried out with the FEM formulation presented in the paper can be seen in <span id='citeF-67'></span>[[#cite-67|[67]]].
1422
1423
<div id='img-17'></div>
1424
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1425
|-
1426
|[[Image:Draft_Samper_881612373-ACmesh.png|600px|Bravo ~Espãna sail racing boat. Mesh used in the analysis.]]
1427
|- style="text-align: center; font-size: 75%;"
1428
| colspan="1" | '''Figure 17:''' <math>Bravo ~Espa\tilde{n}a</math> sail racing boat. Mesh used in the analysis.
1429
|}
1430
1431
<div id='img-18'></div>
1432
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1433
|-
1434
|[[File:Draft_Samper_881612373_4088_fig18.jpg|400px|Bravo ~Espãna. Velocity contours.]]
1435
|- style="text-align: center; font-size: 75%;"
1436
| colspan="1" | '''Figure 18:''' <math>Bravo ~Espa\tilde{n}a</math>. Velocity contours.
1437
|}
1438
1439
<div id='img-19'></div>
1440
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1441
|-
1442
|[[Image:Draft_Samper_881612373-ACres2.png|400px|Bravo ~Espãna. Streamlines.]]
1443
|- style="text-align: center; font-size: 75%;"
1444
| colspan="1" | '''Figure 19:''' <math>Bravo ~Espa\tilde{n}a</math>. Streamlines.
1445
|}
1446
1447
<div id='img-20'></div>
1448
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1449
|-
1450
|[[Image:Draft_Samper_881612373-ACgraph.png|700px|Bravo~Espãna. Resistance test. Comparison of numerical results with experimental data.]]
1451
|- style="text-align: center; font-size: 75%;"
1452
| colspan="1" | '''Figure 20:''' <math>Bravo~Espa\tilde{n}a</math>. Resistance test. Comparison of numerical results with experimental data.
1453
|}
1454
1455
===10.5 Collapse of a water column===
1456
1457
The first problem solved to show the potential of the Lagrangian PFEM is the study of the collapse of a water column. This problem was solved by Koshizuka and Oka <span id='citeF-69'></span>[[#cite-69|[69]]] both experimentally and numerically. It has became a classical example to  validate the Lagrangian formulation for fluid flows. The water is initially kept within a rectangular container including a removable vertical board. A double layer of nodes in the solid walls is used in order to prevent water nodes from exiting the analysis domain. The boundary conditions impose zero velocity at the wall nodes and zero (atmospheric) pressure at the free surface. The method allows one to follow the large motion of the water particles including separation of some water drops. The collapse starts at time t = 0, when the board is removed. Viscosity and surface tension are neglected in the analysis. Figure&nbsp;21 shows the point positions at different time steps. The dark points represent the free surface detected with the algorithm described in Section 8. The internal points are shown in a gray colour and the fixed points in black.
1458
1459
<div id='img-21'></div>
1460
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1461
|-
1462
|[[Image:Draft_Samper_881612373-Fig1ArtBathe.png|450px|Water column collapse at different time steps.]]
1463
|-
1464
|[[Image:Draft_Samper_881612373-Fig1contBathe.png|450px|cont.]]
1465
|- style="text-align: center; font-size: 75%;"
1466
| colspan="1" | '''Figure 21:''' Water column collapse at different time steps.
1467
|}
1468
1469
1470
The water is running on the bottom wall until, at 0.3 sec it impinges on the right vertical wall. Breaking waves appear at 0.6 sec. At about 1 sec. the wave again reaches the left wall. Agreement with the experimental results <span id='citeF-69'></span>[[#cite-69|[69]]] both in the shape of the free surface as well as in its time evolution are excellent.
1471
1472
Figure 22 shows the finite element mesh generated at a time step. We recall that this mesh is used to solve the equations of motion of the fluid  particles as described in the previous sections.
1473
1474
The 3D solution of the same case is shown in Figure 23. More information on the PFEM solution of this problem can be found in <span id='citeF-45'></span>[[#cite-45|[45]]].
1475
1476
<div id='img-23'></div>
1477
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1478
|-
1479
|[[Image:Draft_Samper_881612373-Figure2c.png|420px|Finite element mesh discretizing the fluid domain and the container walls at a certain time step.]]
1480
|- style="text-align: center; font-size: 75%;"
1481
| colspan="1" | '''Figure 22:''' Finite element mesh discretizing the fluid domain and the container walls at a certain time step.
1482
|}
1483
1484
<div id='img-24'></div>
1485
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1486
|-
1487
|[[Image:Draft_Samper_881612373-Fig7_1.png|600px|]]
1488
|-
1489
|(a) t = 0 sec. (b) t = 0.2 sec.
1490
|-
1491
|[[Image:Draft_Samper_881612373-Fig7_2.png|600px|]]
1492
|-
1493
|(c) t = 0.4 sec. (d) t = 0.6 sec.
1494
|-
1495
| [[Image:Draft_Samper_881612373-Fig7_3.png|600px|]]
1496
|-
1497
|(e) t = 0.8 sec. (f) t = 1.1 sec.
1498
|- style="text-align: center; font-size: 75%;"
1499
| colspan="2" | '''Figure 23:''' Water column collapse in a 3D domain.
1500
|}
1501
1502
===10.6 Sloshing problems===
1503
1504
The simple problem of the free oscillation of an incompressible liquid in a container is considered next. A numerical and analytical solution for this problem can be found in <span id='citeF-70'></span>[[#cite-70|[70]]]. Figure 24 shows a schematic view of the problem and the point distribution in the initial position. The dark points represent the fixed points on the walls where the velocity is fixed to zero.
1505
1506
<div id='img-24'></div>
1507
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1508
|-
1509
|[[Image:Draft_Samper_881612373-Fig3.png|300px|]]
1510
|[[Image:Draft_Samper_881612373-Fig4.png|500px|]]
1511
|- style="text-align: center; font-size: 75%;"
1512
| colspan="2" | '''Figure 24:''' Sloshing. Initial point distribution and comparison of the numerical and analytical solutions.
1513
|}
1514
1515
Figure 24 also shows the  time evolution of the amplitude compared with the analytical results for the near inviscid case.  Little numerical viscosity is observed on the phase wave and amplitude in spite of the relative coarse distribution of nodes.
1516
1517
The analytical solution is only acceptable for small wave amplitudes. For larger amplitudes, additional waves are overlapping and, finally, the wave breaks and also some particles separate from the fluid domain due to their large velocity.  Figure 25 shows the numerical results obtained with the PFEM for this case. Breaking waves as well as separation effects can be seen on the free surface. This particular and very complicated effect is  well represented by the PFEM.
1518
1519
In order to further test the potential  of the PFEM the same sloshing problem was solved in 3D.  Figure 26 shows the different point positions at two time steps. Each point position was represented by a sphere and only a half of the fixed recipient is represented on the figure. This  representation is only used in order to improve the visualization of the numerical results.
1520
1521
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1522
|-
1523
|[[Image:Draft_Samper_881612373-Fig5.png|600px|]]
1524
|- style="text-align: center; font-size: 75%;"
1525
| '''Figure 25:''' PFEM results for a large amplitude sloshing problem
1526
|}
1527
1528
1529
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1530
|-
1531
|[[Image:Draft_Samper_881612373-Fig6.png|600px|]]
1532
|- style="text-align: center; font-size: 75%;"
1533
| '''Figure 26:''' 3D sloshing problem 
1534
|}
1535
1536
===10.7 Container ship hit by an incoming wave===
1537
1538
Figure 27 shows the analysis of the motion of the transverse sections of a container ship hit by an incoming wave. The dynamic motion of the ship is induced by the resultant of the pressure and the viscous forces acting on the ship boundaries.  The section of the ship analyzed corresponds  to that of a real container ship. The  ship is  assumed to be rigid and is free to move laterally due to the sea wave forces. The objective of the study was to asses the influence of the stabilizers in the ship roll. The figures show clearly how the PFEM predicts the ship and wave motions in a realistic manner. Further examples of this type solved with the PFEM can be found in <span id='citeF-46'></span>[[#cite-46|[46]]].
1539
1540
1541
<div id='img-27'></div>
1542
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1543
|-
1544
|[[Image:Draft_Samper_881612373-Figure33.png|600px|Ship with stabilizers hit by a lateral wave ]]
1545
|- style="text-align: center; font-size: 75%;"
1546
| colspan="1" | '''Figure 27:''' Ship with stabilizers hit by a lateral wave 
1547
|}
1548
1549
===10.8 Rigid square falling in a recipient with water===
1550
1551
In the next  example a  solid square is initially  free and falls down within a water recipient. The square is modelled a  rigid solid subjected to  pressure and viscous forces acting in its boundaries. The resultant of the fluid forces and the weight of the square are applied to the center of the square. These forces govern the displacement of the square which is computed by solving  the dynamic equations of motion as described in the fractional step algorithm of Section 6, similarly as for the rigid ship of the  previous example. Here again  the moving square contours define a boundary condition for the fluid particles at each time step.
1552
1553
Initially the solid falls down freely due to the gravity forces (Figure 28). Once in contact with the water surface, the Alpha-Shape method recognizes the different boundary contours which are shown with a thick line in the figure.  The pressure  and viscous forces are evaluated in all the domain and in particular on the square contours. The fluid forces introduce a negative acceleration in the vertical motion until, once the square is completely inside the water, the vertical  velocity  becomes zero. Then,  buoyancy  forces bring the square up to the free-surface. It is interesting to observe that there is a rotation of the square. The reason is that the center of the floating forces is higher in the rotated position than in the initial ones.
1554
1555
Figure 29 shows a repetition of the same problem showing now all the finite elements in the mesh discretizing the fluid. We recall that in all the  problems here described the mesh in the fluid domain ''is regenerated at each time step'' combining linear triangles and quadrilateral elements as described in Section 8.3. Note that some fluid particles separate from the fluid domain. These particles are treated as free boundary points with zero pressure and hence fall down due to gravity.
1556
1557
It is interesting to see that the final position of the square is different from that of Figure 28. This is due to the unstable character of the square motion. A small difference in the numerical computations (for instance in the mesh generation process) shifts the movement of the square towards the right or the left. Note  that a final rotated equilibrium position is found in both cases. For further details see <span id='citeF-46'></span>[[#cite-46|[46]]].
1558
1559
1560
<div id='img-26'></div>
1561
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1562
|-
1563
|[[Image:Draft_Samper_881612373-Fig13.png|600px|Square falling into a recipient with water. The square is modelled as a rigid solid. Motion of the square and free surface positions at different time steps.]]
1564
|- style="text-align: center; font-size: 75%;"
1565
| colspan="1" | '''Figure 28:''' Square falling into a recipient with water. The square is modelled as a rigid solid. Motion of the square and free surface positions at different time steps.
1566
|}
1567
1568
1569
<div id='img-27'></div>
1570
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1571
|-
1572
|[[Image:Draft_Samper_881612373-Figure10_con231.png|450px|]]
1573
|-
1574
|[[Image:Draft_Samper_881612373-Figure10cont_con231.png|450px|]]
1575
|- style="text-align: center; font-size: 75%;"
1576
| colspan="1" | '''Figure 29:''' Square falling in a water recipient. The square is modeled as a  rigid solid. The finite element meshes generated at the selected instants are shown.
1577
|}
1578
1579
===10.9 Mixing of particles within a fluid===
1580
1581
Figure 30 shows an example of application of the PFEM to the mixing of a collection of particles within a container containing a fluid of a higher density. Initially the particles are thrown into the container and mix with the fluid as shown. As time evolves the particles move up naturally towards the surface of the fluid due to their smaller density. This  example clearly shows the possibilities of the PFEM for analysis of fluid mixing situations.
1582
1583
1584
<div id='img-30'></div>
1585
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1586
|-
1587
|[[Image:Draft_Samper_881612373-Fig_mixing.png|458px|Mixing of particles in a fluid. Evolution of the particles during the mixing process]]
1588
|- style="text-align: center; font-size: 75%;"
1589
| colspan="1" | '''Figure 30:''' Mixing of particles in a fluid. Evolution of the particles during the mixing process
1590
|}
1591
1592
==11 CONCLUSIONS==
1593
1594
The finite calculus form of the fluid mechanics equations  is a good starting point for deriving stabilized finite algorithms for solving a variety of fluid flow problems using Euler, ALE and fully Lagrangian descriptions. Fractional step and predictor-corrector algorithms with intrinsic stabilization properties can be readily derived from the FIC governing equations. Free surface wave effects and fluid-structure interaction situations  can be accounted for in a straightforward manner within the general flow solution algorithm. The ALE formulation is particularly adequate for analysis of problems involving free surface waves of moderate amplitude, typical of ship hydrodynamics situations. The Lagrangian PFEM formulation is very effective for fluid flow problems involving large motions of the free surface, splashing of waves,  complex fluid-structure interactions and mixing problems.
1595
1596
==ACKNOWLEDGEMENTS==
1597
1598
The authors are grateful to Copa America Desafio Español SA for providing the geometry and experimental data of the racing boat analyzed in example 10.4.
1599
1600
Examples 10.1&#8211;10.4 were analyzed with the finite element code Tdyn based on the FEM formulation here presented [70].
1601
1602
Thanks are also given to Profs. R.L. Taylor and R. Löhner, Dr. R. Flores and Mr. R. Aubry for many useful discussions.
1603
1604
==BIBLIOGRAPHY==
1605
1606
<div id="cite-1"></div>
1607
'''[[#citeF-1|[1]]]''' O.C. Zienkiewicz  and  R.C. Taylor,''The finite element method'', 5th Edition, 3 Volumes, Butterworth&#8211;Heinemann, 2000.
1608
1609
<div id="cite-2"></div>
1610
'''[[#citeF-2|[2]]]''' C. Hirsch, ''Numerical computation of internal and external flow'', J. Wiley, Vol. 1 1988, Vol. 2, 1990.
1611
1612
<div id="cite-3"></div>
1613
'''[3]''' A.J. Chorin,  “A numerical solution for solving incompressible viscous flow problems” ''J. Comp. Phys.'', '''2''', 12&#8211;26, 1967.
1614
1615
<div id="cite-4"></div>
1616
'''[[#citeF-4|[4]]]''' W.R. Briley, S.S. Neerarambam and D.L. Whitfield, “Multigrid algorithm for three-dimensional incompressible high-Reynolds number turbulent flows”, ''AIAA Journal'',  '''33 (1)''', 2073&#8211;2079, 1995.
1617
1618
<div id="cite-5"></div>
1619
'''[5]''' J. Peraire, K. Morgan  and J. Peiro, “The simulation of 3D incompressible flows using unstructured grids”, In ''Frontiers of Computational Fluid Dynamics'', Caughey DA and Hafez MM. (eds), Chapter 16, J. Wiley, 1994.
1620
1621
<div id="cite-6"></div>
1622
'''[6]'''  C. Sheng,  L.K. Taylor and D.L. Whitfield,  “Implicit lower-upper/approximate-factorization schemes for incompressible flows” ''Journal of Computational Physics'', '''128 (1)''', 32&#8211;42, 1996.
1623
1624
<div id="cite-7"></div>
1625
'''[[#citeF-7|[7]]]''' M. Storti, N. Nigro  and S.R. Idelsohn, “Steady state incompressible flows using explicit schemes with an optimal local preconditioning”, ''Computer Methods in Applied Mechanics and Engineering'', '''124''', 231&#8211;252, 1995.
1626
1627
<div id="cite-8"></div>
1628
'''[8]''' J.C. Heinrich, P.S. Hayakorn and O.C. Zienkiewicz, “An upwind finite element scheme for two dimensional convective transport equations”, ''Int. J. Num. Meth. Engng.'', '''11''', 131&#8211;143, 1977.
1629
1630
<div id="cite-9"></div>
1631
'''[9]''' S.R. Idelsohn, M. Storti and N. Nigro, “Stability analysis of mixed finite element formulation with special mention to stabilized equal-order interpolations” ''Int. J. for Num. Meth. in Fluids'', '''20''', 1003-1022, 1995.
1632
1633
<div id="cite-10"></div>
1634
'''[10]''' S.R. Idelsohn, N. Nigro, M. Storti and G. Buscaglia, “A Petrov-Galerkin formulation for advection-reaction-diffusion”, ''Comput. Meth. Appl. Mech. Engrg.'', '''136''', 27&#8211;46, 1996.
1635
1636
<div id="cite-11"></div>
1637
'''[11]''' A. Brooks and T.J.R. Hughes, “Streamline upwind/Petrov-Galerkin  formulation for convection dominated flows with particular emphasis  on the incompressible Navier-Stokes equations”, ''Comput. Methods Appl.  Mech. Engrg'', '''32''',  199&#8211;259, 1982.
1638
1639
<div id="cite-12"></div>
1640
'''[12]''' T.J.R. Hughes and M. Mallet, “A new finite element formulations  for computational fluid dynamics: III. The generalized streamline operator  for multidimensional advective-diffusive systems”, ''Comput Methods Appl.  Mech. Engrg.'', '''58''', pp. 305&#8211;328,  1986.
1641
1642
<div id="cite-13"></div>
1643
'''[13]''' P. Hansbo and a. Szepessy, “A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations”, ''Comput. Methods Appl. Mech. Engrg.'', '''84''', 175&#8211;192, 1990.
1644
1645
<div id="cite-14"></div>
1646
'''[14]''' T.J.R. Hughes, L.P. Franca and M. Balestra, “A new finite element formulation for computational fluid dynamics. V Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accomodating equal order interpolations”, ''Comput. Methods Appl. Mech. Engrg.'', '''59''', 85&#8211;99, 1986.
1647
1648
<div id="cite-15"></div>
1649
'''[15]''' L.P. Franca and S.L. Frey, “Stabilized finite element methods:  II. The incompressible Navier-Stokes equations”, ''Comput. Method Appl.  Mech. Engrg.'', Vol. '''99''', pp. 209&#8211;233, 1992.
1650
1651
<div id="cite-16"></div>
1652
'''[16]''' T.J.R. Hughes, G. Hauke and K. Jansen, “Stabilized finite  element methods in fluids: Inspirations, origins, status and recent  developments”, in: ''Recent Developments in Finite Element Analysis''. A Book Dedicated to Robert L. Taylor,  T.J.R. Hughes, E. Oñate and  O.C. Zienkiewicz (Eds.), (International Center for Numerical  Methods in Engineering, Barcelona, Spain, pp. 272&#8211;292, 1994.
1653
1654
<div id="cite-17"></div>
1655
'''[17]'''  M.A. Cruchaga and E. Oñate, “A finite element formulation for incompressible flow problems using a generalized streamline operator”, ''Comput. Methods in Appl. Mech. Engrg.'', '''143''', 49&#8211;67, 1997.
1656
1657
<div id="cite-18"></div>
1658
'''[18]'''   M.A. Cruchaga and E. Oñate, “A generalized streamline finite element approach for the analysis of incompressible flow problems including moving surfaces”, ''Comput. Methods in Appl. Mech. Engrg.'', '''173''', 241&#8211;255, 1999.
1659
1660
<div id="cite-19"></div>
1661
'''[[#citeF-19|[19]]]''' T.J.R. Hughes, L.P. Franca and G.M. Hulbert, “A new finite  element formulation for computational fluid dynamics: VIII. The  Galerkin/least-squares method for advective-diffusive equations”, '' Comput. Methods Appl. Mech. Engrg.'', '''73''',  pp. 173&#8211;189, 1989.
1662
1663
<div id="cite-20"></div>
1664
'''[20]''' T.E. Tezduyar, S. Mittal, S.E. Ray and R. Shih, “Incompressible flow computations with stabilized bilinear and linear equal order interpolation velocity&#8211;pressure elements”, ''Comput. Methods Appl. Mech. Engrg.'', '''95''', 221&#8211;242, 1992.
1665
1666
<div id="cite-21"></div>
1667
'''[[#citeF-21|[21]]]''' J. Donea, “A Taylor-Galerkin method for convective transport problems”, ''Int. J. Num. Meth. Engng.'', '''20''', 101&#8211;119, 1984.
1668
1669
<div id="cite-22"></div>
1670
'''[[#citeF-22|[22]]]''' J. Douglas, T.F. Russell, “Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures”, ''SIAM J. Numer. Anal.'', '''19''', 871, 1982.
1671
1672
<div id="cite-23"></div>
1673
'''[23]''' O. Pironneau, “On the transport-diffusion algorithm and its applications to the Navier-Stokes equations”, ''Numer. Math.'', '''38''', 309, 1982.
1674
1675
<div id="cite-24"></div>
1676
'''[24]''' R. Löhner, K. Morgan, O.C. Zienkiewicz, “The solution of non-linear hyperbolic equation systems by the finite element method”, ''Int. J. Num. Meth. in Fluids'', '''4''', 1043, 1984.
1677
1678
<div id="cite-25"></div>
1679
'''[[#citeF-25|[25]]]'''  R. Codina, M. Vazquez and O.C. Zienkiewicz,  “A general algorithm for compressible and incompressible flow - Part III. The semi-implicit form” ''Int. J. Num. Meth. in Fluids'', '''27''', 13&#8211;32, 1998.
1680
1681
<div id="cite-26"></div>
1682
'''[26]'''  R. Codina and O.C. Zienkiewicz, “CBS versus GLS stabilization of the incompressible Navier-Stokes equations and the role of the time step as stabilization parameter”, ''Communications in Numerical Methods in Engineering'', '''18 (2)''', 99&#8211;112, 2002.
1683
1684
<div id="cite-27"></div>
1685
'''[[#citeF-27|[27]]]'''  R. Codina and J. Blasco, “Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient operator”,  ''Comput. Methods in Appl. Mech. Engrg.'', '''182''', 277&#8211;301, 2000.
1686
1687
<div id="cite-28"></div>
1688
'''[[#citeF-28|[28]]]''' T.J.R. Hughes, “Multiscale phenomena: Green functions,  subgrid scale models, bubbles and the origins of stabilized methods”,   ''Comput. Methods Appl. Mech. Engrg'', Vol. '''127''', pp. 387&#8211;401, 1995.
1689
1690
<div id="cite-29"></div>
1691
'''[29]''' F. Brezzi, L.P. Franca, T.J.R. Hughes and A. Russo, ``<math>b=\int  g</math>'', ''Comput. Methods Appl. Mech. Engrg.'', '''145''', 329&#8211;339, 1997.
1692
1693
<div id="cite-30"></div>
1694
'''[30]'''  R. Codina, “Stabilized finite element approximation of transient incompressible flows using orthogonal subscales”, ''Comput. Methods Appl. Mech. Engrg.'', '''191''', 4295&#8211;4321, 2002.
1695
1696
<div id="cite-31"></div>
1697
'''[[#citeF-31|[31]]]'''  J. Donea and A. Huerta, ``''Finite element method for flow problems'''', J. Wiley, 2003.
1698
1699
<div id="cite-32"></div>
1700
'''[[#citeF-32|[32]]]''' E. Oñate, ``Derivation of stabilized equations for advective-diffusive transport and fluid flow problems'', ''Comput. Meth. Appl. Mech. Engng.'', Vol. '''151''', pp. 233&#8211;267, (1998).
1701
1702
<div id="cite-33"></div>
1703
'''[[#citeF-33|[33]]]'''  E. Oñate, J. García and S. Idelsohn, ``Computation of the stabilization parameter for the finite element solution of advective-diffusive problems'', ''Int. J. Num. Meth. Fluids'', Vol. '''25''', pp. 1385&#8211;1407, (1997).
1704
1705
<div id="cite-34"></div>
1706
'''[34]'''  E. Oñate, J. García and S. Idelsohn, ``An alpha-adaptive approach for stabilized finite element solution of advective-diffusive problems with sharp gradients'', ''New Adv. in Adaptive Comp. Met. in Mech.'', P. Ladeveze and J.T. Oden (Eds.), Elsevier, (1998).
1707
1708
<div id="cite-35"></div>
1709
'''[35]''' E. Oñate and M. Manzan, “A general procedure for deriving stabilized space-time finite element methods for advective-diffusive problems”, ''Int. J. Num. Meth. Fluids'', '''31''', 203&#8211;221, 1999.
1710
1711
<div id="cite-36"></div>
1712
'''[36]''' E. Oñate and M. Manzan, “Stabilization techniques for finite element analysis of convection diffusion problems”, in ''Computational Analysis of Heat Transfer'', G. Comini and B. Sunden (Eds.), WIT Press, Southampton, 2000.
1713
1714
<div id="cite-37"></div>
1715
'''[[#citeF-37|[37]]]'''  E. Oñate, “A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation”, ''Comp. Meth. Appl. Mech. Engng.'', '''182''', 1&#8211;2, 355&#8211;370, 2000.
1716
1717
<div id="cite-38"></div>
1718
'''[[#citeF-38|[38]]]'''  E. Oñate and J. García, “A finite element method for  fluid-structure interaction with surface waves using a finite calculus formulation”, ''Comput. MethodsAppl. Mech. Engrg.'', '''191''', 635&#8211;660, (2001).
1719
1720
<div id="cite-39"></div>
1721
'''[39]'''  E. Oñate, “Possibilities of finite calculus in computational mechanics”,  ''Int. J. Num. Meth. Engng.'', '''60'''(1), 255&#8211;281, 2004.
1722
1723
<div id="cite-40"></div>
1724
'''[40]''' J. García and E. Oñate, “An unstructured finite element solver for ship hydrodynamic problems”, ''Journal of Applied Mechanics'', '''70''', 18&#8211;26, January 2003.
1725
1726
<div id="cite-41"></div>
1727
'''[[#citeF-41|[41]]]'''  E. Oñate, J. García and S.R. Idelsohn, “Ship hydrodynamics”, in ''Encyclopedia of Computational Mechanics'', E. Stein, R. de Borst and T.J.R. Hughes (Eds), J. Wiley, 2004.
1728
1729
<div id="cite-42"></div>
1730
'''[[#citeF-42|[42]]]''' E. Oñate and S. Idelsohn, A mesh free finite point method for advective-diffusive transport and fluid flow problems, ''Computational Mechanics'', '''21''', 283&#8211;292, 1998.
1731
1732
<div id="cite-43"></div>
1733
'''[43]'''  E. Oñate, C. Sacco and  S. Idelsohn, “A finite point method for incompressible flow problems”, ''Computing and Visualization in Science'', '''2''', 67&#8211;75, 2000.
1734
1735
<div id="cite-44"></div>
1736
'''[[#citeF-44|[44]]]'''  S.R. Idelsohn, E. Oñate, F. Del Pin and N. Calvo, “Lagrangian formulation: the only way to solve some free-surface fluid mechanics problems”, ''Fifth World Congress on Computational Mechanics'', Mang HA, Rammerstorfer FG and Eberhardsteiner J. (eds.), July 7&#8211;12, Viena, Austria, 2002.
1737
1738
<div id="cite-45"></div>
1739
'''[[#citeF-45|[45]]]''' S.R. Idelsohn, E. Oñate and F. Del Pin, “A lagrangian meshless finite element method applied to fluid-structure interaction problems”, ''Computer and Structures'', '''81''', 655&#8211;671, 2003.
1740
1741
<div id="cite-46"></div>
1742
'''[[#citeF-46|[46]]]'''  E. Oñate, S.R. Idelsohn, F. Del Pin and R. Aubry,  “The particle finite element method. An overview”, Submitted to ''Int. J. Comput. Meth.'', '''1''' ('''2'''), 2004.
1743
1744
<div id="cite-47"></div>
1745
'''[47]'''  R. Aubry, S.R. Idelsohn  and E. Oñate, “Particle finite element method in fluid mechanics including thermal convection-diffusion”. ''Computer & Structures'', submitted, 2004.
1746
1747
<div id="cite-48"></div>
1748
'''[48]'''  S.R. Idelsohn, E. Oñate and F. Del Pin, “The Particle Finite Element Method:  a powerful tool to solve incompressible flows with free-surfaces and breaking waves”, ''Int. J. Num. Meth. Engng.'', (Submitted), 2004.
1749
1750
<div id="cite-49"></div>
1751
'''[[#citeF-49|[49]]]''' S.R. Idelsohn, E. Oñate, N. Calvo and F. del Pin, “The meshless finite element method”,  ''Int. J. Num. Meth. Engng.'', Vol. '''58''', pp. 893- 912, 2003.
1752
1753
<div id="cite-50"></div>
1754
'''[[#citeF-50|[50]]]'''  N. Calvo, S.R. Idelsohn and E. Oñate, “The extended Delaunay tesselation”, ''Engineering Computations'', '''20''' (5/6), 583&#8211;600, 2003.
1755
1756
<div id="cite-51"></div>
1757
'''[51]''' S.R. Idelsohn, N. Calvo and E. Oñate, “Polyhedrization of an arbitrary 3D point set”, ''Comput. Meth. Appl. Mech. Engng.'', '''192''', 2649&#8211;2667, 2003.
1758
1759
<div id="cite-52"></div>
1760
'''[[#citeF-52|[52]]]'''  R. Codina, “Pressure stability in fractional step finite element method for incompressible flows”, ''J. Comput. Physics'', '''170''', 112&#8211;140, 2001.
1761
1762
<div id="cite-53"></div>
1763
'''[53]'''  R. Codina and O. Soto, “Approximation of the incompressible Navier-Stokes equations using orthogonal-subscale stabilization and pressure segregation on anisotropic finite element meshes”, ''Comput. Meth. Appl. Mech. Eng.'', to appear.
1764
1765
<div id="cite-54"></div>
1766
'''[[#citeF-54|[54]]]'''  T.E. Tezduyar, M. Behr and J. Liou, “A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary tests”, ''Comput. Methods in Appl. Mech. and Engrg.'', '''94''', 339&#8211;351, 1992.
1767
1768
<div id="cite-55"></div>
1769
'''[[#citeF-55|[55]]]''' G. Chiandusi, G. Bugeda  and E. Oñate, “A simple method for update of finite element meshes”, ''Commun, Numer. Meth. Engng.'', '''16''', 1&#8211;9, 2000.
1770
1771
<div id="cite-56"></div>
1772
'''[[#citeF-56|[56]]]''' D.C. Wilcox, ''Turbulence modeling for CFD'', DCW Industries Inc., 1994.
1773
1774
<div id="cite-57"></div>
1775
'''[[#citeF-57|[57]]]'''  H. Edelsbrunner  and E.P. Mucke, E.P., “Three dimensional alpha shapes”, ''ACM Trans. Graphics'', '''13''', 43&#8211;72, 1999.
1776
1777
<div id="cite-58"></div>
1778
'''[[#citeF-58|[58]]]'''  T.J.R. Hughes and M. Mallet, ``A new finite element formulations for computational fluid dynamics: IV. A discontinuity capturing operator for multidimensional advective-diffusive system, ''Comput. Methods Appl. Mech. Engrg.'', '''58''', 329&#8211;336, 1986.
1779
1780
<div id="cite-59"></div>
1781
'''[59]'''  R. Codina, “A discontinuity-capturing crosswind dissipation for the finite element solution of the convection-diffusion equation”, ''Comput. Methods Appl. Mech. Engrg.'', '''110''', 325&#8211;342, 1993.
1782
1783
<div id="cite-60"></div>
1784
'''[[#citeF-60|[60]]]'''   E. Oñate, J. Rojek, R.L. Taylor and O.C. Zienkiewicz, “Finite calculus formulation for incompressible solids using linear triangles and tetrahedra”, ''Int. J. Num. Meth. Engng.'',  '''59''', 1473&#8211;1500, 2004.
1785
1786
<div id="cite-61"></div>
1787
'''[61]'''   E. Oñate, R.L. Taylor, O.C. Zienkiewicz and J. Rojek, “A residual correction method based on finite calculus”, ''Engineering Computations'', '''20''', (5/6), 629&#8211;658, 2003.
1788
1789
<div id="cite-62"></div>
1790
'''[62]'''  J.C. Cante, J. Oliver and C. González, “Powder forming simulation with the particle finite element method”, ''Computational Mechanics'', Z.H. Yao, M.W. Yuan and W.X. Zhong (Eds.), CD-Rom Proceedings of the WCCM VI, Beijing, September 5&#8211;10, 2004.
1791
1792
<div id="cite-63"></div>
1793
'''[63]'''  E. Oñate, J. Arteaga, J, García and R. Flores, “Error estimation and mesh adaptivity in incompressible viscous flows using a residual power approach”, Submitted to ''Comput. Meth. Appl. Mech. Engrg.'', 2004.
1794
1795
<div id="cite-64"></div>
1796
'''[[#citeF-64|[64]]]'''  Korea Research Institute of Ships and Ocean Engineering (KRISO).http://www.iihr.uiowa.edu/gothenburg2000/KVLCC/tanker.html.
1797
1798
<div id="cite-65"></div>
1799
'''[[#citeF-65|[65]]]'''  R. Löhner, C. Yang, E. Oñate and S. Idelsohn, An unstructured grid-based parallel free surface solver, ''Appl. Num. Math.'', '''31''', 271&#8211;293, (1999).
1800
1801
<div id="cite-66"></div>
1802
'''[66]''' J. García, R. Luco-Salman, M. Salas, M. López-Rodríguez and E. Oñate E, ``An advanced finite element method for fluid-dynamic analysis of America's Cup boat'', ''High Performance Yacht Design Conference'', Auckland, 4&#8211;6, December, 2002.
1803
1804
<div id="cite-67"></div>
1805
'''[[#citeF-67|[67]]]'''  S.R. Idelsohn, E. Oñate and C. Sacco, Finite element solution of the free surface ship-wave problem, ''Int. J. Num. Meth. Engng.'', '''45''', 503&#8211;508, 1999.
1806
1807
<div id="cite-68"></div>
1808
'''[68]'''  S. Koshizuka and Y. Oka, “Moving particle semi-implicit method for fragmentation of incompressible fluid”, ''Nuclear Engineering Science'', '''123''', 421-434, 1996.
1809
1810
<div id="cite-69"></div>
1811
'''[[#citeF-69|[69]]]'''  R. Radovitzki  and M. Ortiz,  “Lagrangian finite element analysis of a Newtonian flows”, ''Int.  J. Num. Meth. Engng.'', '''43''', 607&#8211;619, 1998.
1812
1813
<div id="cite-70"></div>
1814
'''[[#citeF-70|[70]]]'''  ''Tdyn. A finite element code for fluid-dynamic analysis'', COMPASS Ingeniería y Sistemas SA,  <u>www.compassis.com</u>, 2004.
1815

Return to Onate et al 2006e.

Back to Top
GET PDF

Document information

Published on 01/01/2006

DOI: 10.1016/j.cma.2004.10.016
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 43
Views 47
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?