You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
==Abstract==
2
3
We present a general formulation for analysis of fluid-structure interaction problems using the particle finite element method (PFEM). The key feature of the PFEM is the use of a Lagrangian description to model the motion of nodes (particles) in both the fluid and the structure domains. Nodes are thus viewed as particles which can freely move and even separate from the main analysis domain representing, for instance,  the effect of water drops. A mesh connects the nodes defining the discretized domain where the governing equations, expressed in an integral from, are solved as in the standard FEM. The necessary stabilization for dealing with the incompressibility of the fluid is introduced via the finite calculus (FIC) method. A fractional step scheme for the transient coupled fluid-structure solution is described. Examples of application of the PFEM  to solve a number of fluid-structure interaction problems involving large motions of the free surface and splashing of waves are presented.
4
5
'''Keyword''': Lagrangian formulation, fluid-structure, particle finite element.
6
7
==1 Introduction==
8
9
There is an increasing interest in the development of robust and efficient numerical methods for analysis of engineering problems involving the interaction of fluids and structures accounting for large motions of the fluid free surface and the existence of  fully  or partially submerged bodies. Examples of this kind are common  in  ship hydrodynamics, off-shore structures, spill-ways in dams, free surface channel flows, liquid containers, stirring reactors, mould filling processes, etc.
10
11
The movement of solids in fluids is usually analyzed with the finite element method (FEM) <span id='citeF-20'></span>[[#cite-20|[20]]] using the so called arbitrary Lagrangian-Eulerian (ALE) formulation <span id='citeF-3'></span>[[#cite-3|[3]]]. In the ALE approach the movement of the fluid particles is decoupled from that of the mesh nodes. Hence the relative velocity between mesh nodes and particles is used as the convective velocity in the momentum equations.
12
13
Typical difficulties of FSI analysis using the FEM with both the Eulerian and ALE formulation include the treatment of the convective terms and the incompressibility constraint in the fluid equations, the modelling and tracking of the free surface in the fluid, the transfer of information between the fluid and solid domains via the contact interfaces, the modelling of wave splashing, the possibility to deal with large rigid body motions of the structure within the fluid domain, the efficient updating of the finite element meshes for both the structure and the fluid, etc.
14
15
Most of these problems disappear if a ''Lagrangian description'' is used to formulate the governing equations of both the solid and the fluid domain. In the Lagrangian formulation the motion of the individual particles are followed and, consequently, nodes in a finite element mesh can be viewed as moving “particles”. Hence, the motion of the  mesh discretizing the total domain (including both the fluid and solid parts) is followed during the transient solution.
16
17
In this paper we present an overview of a particular class of Lagrangian formulation developed by the authors to solve problems involving the interaction between fluids and solids in a unified manner. The method, called the ''particle finite element method'' (PFEM), treats the mesh nodes in the fluid and solid domains as  particles which can freely move and even separate from the main fluid domain representing, for instance, the effect of water drops. A finite element mesh connects the nodes defining the discretized domain where the governing equations are solved in the standard FEM fashion. The PFEM is the natural evolution of recent work of the authors for  the solution of FSI problems using Lagrangian finite element and meshless methods <span id='citeF-1'></span>[[#cite-1|[1]],<span id='citeF-7'></span>[[#cite-7|7]]-<span id='citeF-10'></span>[[#cite-10|10]],<span id='citeF-17'></span>[[#cite-17|17]]-<span id='citeF-19'></span>[[#cite-19|19]]].
18
19
An obvious advantage of the Lagrangian formulation is that the convective terms disappear from the fluid equations. The difficulty is however transferred to the problem of adequately (and efficiently) moving the mesh nodes. Indeed for large mesh motions remeshing may be a frequent necessity along the time solution. We use an innovative mesh regeneration procedure blending elements of different shapes using an extended Delaunay tesselation <span id='citeF-7'></span>[[#cite-7|[7]]-<span id='citeF-9'></span>[[#cite-9|9]]]. Furthermore, this special polyhedral finite element needs special shape functions. In this paper, meshless finite element (MFEM) shape functions have been used <span id='citeF-7'></span>[[#cite-7|[7]]].
20
21
The need to properly treat the incompressibility condition in the fluid still remains in the Lagrangian formulation. The use of standard finite element interpolations may lead to a volumetric locking defect unless some precautions are taken <span id='citeF-3'></span>[[#cite-3|[3]],<span id='citeF-20'></span>[[#cite-20|20]]].  In our work the stabilization via a finite calculus (FIC) procedure has been chosen <span id='citeF-12'></span>[[#cite-12|[12]]]. Recent applications of the FIC method for incompressible flow analysis using linear triangles and tetrahedra are reported in <span id='citeF-5'></span>[[#cite-5|[5]],<span id='citeF-12'></span>[[#cite-12|12]],<span id='citeF-13'></span>[[#cite-13|13]],<span id='citeF-18'></span>[[#cite-18|18]],<span id='citeF-19'></span>[[#cite-19|19]],<span id='citeF-14'></span>[[#cite-14|14]],<span id='citeF-15'></span>[[#cite-15|15]]].
22
23
The layout of the paper is the following. In the next section the basic ideas of the PFEM are outlined. Next the basic equation for an incompressible flow using a Lagrangian description and the FIC formulation are presented. Then a fractional step scheme for the transient solution via standard finite element procedures is described. Details of the treatment of the coupled FSI problem are given. The procedures for mesh generation and for identification of the free surface nodes are briefly outlined. Finally, the efficiency of the ''particle finite element method'' (PFEM) is shown in its application to a number of FSI problems involving large flow motions, surface waves, moving bodies. etc.
24
25
==2 The basis of the Particle Finite Element Method==
26
27
Let us consider a domain containing both fluid and solid subdomains. The moving fluid particles interact with the solid boundaries thereby inducing the deformation of the solid which in turn affects the flow motion and, therefore, the problem is  fully coupled.
28
29
In the PFEM approach presented here, both the fluid and the solid domains are modelled using an ''updated Lagrangian formulation''. That is, all variables in the fluid and solid domains are assumed to be known in the current configuration at time t. The new set of variables in both domains are sought for in the next or updated configuration at time <math>t+\Delta t</math> (Figure [[#img-1|1]]). The finite element method (FEM) is used to solve the continuum equations in both domains. Hence a mesh discretizing these domains must be generated in order to solve the governing equations for both the fluid and solid problems in the standard FEM fashion. We note once more that the nodes discretizing the fluid and solid domains can be viewed as material particles which motion is tracked during the transient solution. This is useful to model the separation of water particles from the main fluid domain and to follow their subsequent motion as individual particles with an initial velocity and subject to gravity forces.
30
31
It is important to note once more that each particle is a material point characterized
32
by the density of the solid or fluid domain to which it belongs. The mass of a
33
given domain is obtained by integrating the density at the different material points
34
over the domain.
35
36
The quality of the numerical solution  depends on the discretization chosen as in the standard FEM. Adaptive mesh refinement techniques can be used to improve the solution in zones where large motions of the fluid or the structure occur.
37
38
<span id='img-1'></span>
39
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
40
|-
41
|[[File:Draft_Samper_662632188_1293_im1.JPG|400px]]
42
|- style="text-align: center; font-size: 75%;"
43
| colspan="1" | '''Figura 1''': Updated lagrangian description for a continuum containing a fluid and a solid domain
44
|}
45
46
===2.1 Basic steps of the PFEM===
47
48
For clarity purposes we will define the ''collection or cloud of nodes'' (<math>C</math>) pertaining to the fluid and solid domains, the volume (<math>V</math>) defining the analysis domain for the fluid and the solid and the mesh (<math>M</math>) discretizing both domains.
49
A typical solution with the PFEM involves the following steps.
50
51
<ol>
52
<div id="step-1"></div>
53
<li>The starting point at each time step is the cloud of points in the fluid and solid domains. For instance <math>^nC</math> denotes the cloud at time <math>t = tn</math> (Figure [[#img-2|2]]).</li>
54
55
<li>Identify the boundaries for both the fluid and solid domains defining the analysis domain <math>^nV</math> in the fluid and the solid. This is an essential step as some boundaries (such as the free surface in fluids) may be severely distorted during the solution process including separation and re-entering of nodes. The Alpha Shape method <div id="citeF-4"></div>[[#cite-4|4]] is used for the boundary definition (see Section [[#7 Identification of boundary surfaces|7]]). </li>
56
57
<li>Discretize the fluid and solid domains with a finite element mesh <math>^nM</math>. In our work we use an innovative mesh generation scheme based on the extended Delaunay tesselation (Section [[#6 Generation of a new mesh|6]])<div id="citeF-7"></div><div id="citeF-8"></div><div id="citeF-10"></div>[[#cite-7|[7]],[[#cite-8|8]],[[#cite-10|10]]]</li>
58
<div id="step-4"></div>
59
<li>Solve the coupled Lagrangian equations of motion for the fluid and the solid domains. Compute the relevant state variables in both domains at the next (updated) configuration for <math>t+\Delta t</math>: velocities, pressure and viscous stresses in the fluid and displacements, stresses and strains in the solid. An overview of the coupled FSI algorithm is given in the next section. </li>
60
61
<li>Move the mesh nodes to a new position <math>^{n+1}C</math> where <math>n + 1</math> denotes the time <math>t_n+\Delta t</math>, in terms of the time increment size. This step is typically a consequence of the solution process of step [[#step-4|4]]. </li>
62
63
<li>Go back to step [[#step-1|1]] and repeat the solution process for the next time step. </li>
64
65
</ol>
66
67
<span id='img-2'></span>
68
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
69
|-
70
|[[File:Draft_Samper_662632188_8173_img2.JPG|400px]]
71
|- style="text-align: center; font-size: 75%;"
72
| colspan="1" | '''Figura 2''': Sequence of steps to update a “cloud” of nodes from time <math>n (t = t_n)</math> to time <math>n + 1 (t = t_n + \Delta t)</math>
73
|}
74
75
===2.2 Overview of the coupled FSI algoritm===
76
77
Figure [[#img-3|3]] shows a typical domain V with external boundaries <math>\Gamma_v</math> and <math>\Gamma_t</math> where the velocity and the surface tractions are prescribed, respectively. The domain <math>V</math> is formed by fluid (<math>V_F</math>) and solid (<math>V_S</math>) subdomains. Both subdomains interact at a common boundary <math>\Gamma_{FS}</math> where the surface tractions and the kinematic variables (displacements, velocities and acelerations) are the same for both subdomains. Note that both set of variables (the surface tractions and the kinematic variables) are equivalent in the equilibrium configuration.
78
79
<span id='img-3'></span>
80
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
81
|-
82
|[[File:Draft_Samper_662632188_8253_img3.JPG|400px]]
83
|- style="text-align: center; font-size: 75%;"
84
| colspan="1" | '''Figura 3''': Split of the analysis domain <math>V</math> into fluid and solid subdomains. Equality of surface tractions and kinematic variables at the common interface
85
|}
86
87
Let us define <math>^tS</math> and <math>^tF</math> the set of variables defining the kinematics and the stress-strain fields at the solid and fluid domains at time <math>t</math>, respectively, i.e.
88
89
<span id='eq-1'></span>
90
{| class="formulaSCP" style="width: 100%; text-align: left;" 
91
|-
92
| 
93
{| style="text-align: left; margin:auto;width: 100%;" 
94
|-
95
| style="text-align: center;" | <math>^tS := [^tx_S,^tu_S,^tv_S,^ta_S,^t\epsilon_S,^t\sigma_S,\cdot \cdot \cdot]^T</math>
96
|}
97
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
98
|}
99
<span id='eq-2'></span>
100
{| class="formulaSCP" style="width: 100%; text-align: left;" 
101
|-
102
| 
103
{| style="text-align: left; margin:auto;width: 100%;" 
104
|-
105
| style="text-align: center;" | <math>^tF := [^tx_F,^tu_F,^tv_F,^ta_F,^t\dot{\epsilon}_F,^t\sigma_F,\cdot \cdot \cdot]^T</math>
106
|}
107
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
108
|}
109
110
where <math>x</math> is the nodal coordinate vector, <math>u</math>, <math>v</math> and <math>a</math> are the vector of displacements, velocities and accelerations, respectively, <math>\epsilon</math>, <math>\dot{\epsilon}</math> and <math>\sigma</math> are the strain vector, the strainrate (or rate of deformation) vectors and the Cauchy stress vector, respectively and <math>F</math> and <math>S</math> denote the variables in the fluid and solid domains, respectively. In the discretized problem, a bar over these variables will denote nodal values. 
111
112
The coupled fluid-structure interaction (FSI) problem of Figure [[#img-3|3]] will be solved using the following conceptual scheme:
113
114
# We assume that the variables in the solid and fluid domains at time <math>t (^tS</math> and <math>^tF)</math> are known.
115
# Solve for the variables at the solid domain at time <math>t+\Delta t (^{t+\Delta t}S)</math> under prescribed surface tractions at the fluid-solid boundary <math>\Gamma_{FS}</math>.
116
# Solve for the variables at the fluid domain at time <math>t+\Delta t (^{t+\Delta t}F)</math> under prescribed surface tractions at the external boundary <math>\Gamma_t</math> and prescribed velocities at the external and internal boundaries <math>\Gamma_V</math> and <math>\Gamma_{FS}</math>, respectively.
117
118
Iterate between 2 and 3 until convergence.
119
120
The variables at the solid domain <math>^{t+\Delta t}S</math> are found via the integration of the dynamic equations of motion in the solid written as
121
122
<span id='eq-3'></span>
123
{| class="formulaSCP" style="width: 100%; text-align: left;" 
124
|-
125
| 
126
{| style="text-align: left; margin:auto;width: 100%;" 
127
|-
128
| style="text-align: center;" | <math>M_Sa_S + g_S - f_S = 0</math>
129
|}
130
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
131
|}
132
133
where <math>M_S</math>, <math>g_S</math> and <math>f_S</math> denote the mass matrix, the internal node force vector and the external nodal force vector at the solid domain. The time integration of Eq.([[#eq-3|3]]) is performed using a standard Newmark method. An incremental iterative scheme is implemented within each time step to account for non linear geometrical and material effects.
134
135
The FEM solution of the variables in the (incompressible) fluid domain implies solving the momentum and incompressibility equations. As mentioned above this is not such as simple problem as the incompressibility condition limits the choice of the FE approximations for the velocity and pressure to overcome the well known divstability conditions <span id='citeF-20'></span>[[#cite-20|[20]]]. In our work we use a stabilized FEM based on the Finite Calculus approach which allows to use a linear approximation for the velocity and pressure variables. Details of the FEM/FIC formulation used are given in the next section.
136
137
Figure [[#img-4|4]] shows a typical example of a PFEM solution in 2D. The pictures correspond to the analysis of the problem of breakage of a water column <span id='citeF-10'></span>[[#cite-10|[10]],<span id='citeF-13'></span>[[#cite-13|13]]]. Figure [[#img-4|4a]] shows the initial grid of four node rectangles discretizing the fluid domain and the solid walls. Boundary nodes identified with the Alpha-Shape method have been marked with a circle. Figures [[#img-4|4b]] and [[#img-4|4c]] show the mesh for the solution at two later times.
138
139
<span id='img-4'></span>
140
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
141
|-
142
|[[File:Draft_Samper_662632188_7522_img4.JPG]]
143
|- style="text-align: center; font-size: 75%;"
144
| colspan="1" | '''Figura 4''': Breakage of a water column. (a) Discretization of the fluid domain and the solid walls. Boundary nodes are marked with circles. (b) and (c) Mesh in the fluid and solid domains at two different times.
145
|}
146
147
==3 Lagrangian Equations for an Incompressible Fluid. FIC Formulation==
148
149
The standard infinitesimal  equations for a viscous incompressible fluid can be written in a  Lagrangian frame as [Oñate (1998); Zienkiewicz ''et al.'' (2006)].
150
151
==Momentum==
152
153
{| class="formulaSCP" style="width: 100%; text-align: left;" 
154
|-
155
| 
156
{| style="text-align: left; margin:auto;width: 100%;" 
157
|-
158
| style="text-align: center;" | <math>r_{m_i} =0 \quad \hbox{in } \Omega  </math>
159
|}
160
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
161
|}
162
163
==Mass balance==
164
165
{| class="formulaSCP" style="width: 100%; text-align: left;" 
166
|-
167
| 
168
{| style="text-align: left; margin:auto;width: 100%;" 
169
|-
170
| style="text-align: center;" | <math>r_d =0 \quad \hbox{in } \Omega  </math>
171
|}
172
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
173
|}
174
175
where
176
177
{| class="formulaSCP" style="width: 100%; text-align: left;" 
178
|-
179
| 
180
{| style="text-align: left; margin:auto;width: 100%;" 
181
|-
182
| style="text-align: center;" | <math>r_{m_i} = \rho {\partial v_i \over \partial t} + {\partial \sigma _{ij} \over \partial x_j}-b_i\quad ,\quad \sigma _{ji}=\sigma _{ij}</math>
183
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
184
|-
185
| style="text-align: center;" | <math> r_d = {\partial v_i \over \partial x_i}\qquad i,j = 1, n_d </math>
186
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
187
|}
188
|}
189
190
Above <math display="inline">n_d</math> is the number of space dimensions, <math display="inline">v_i</math> is the velocity along the ith global axis (<math display="inline">v_i = {\partial u_i \over \partial t}</math>, where <math display="inline">u_i</math> is the ''i''th displacement), <math display="inline">\rho </math> is the (constant) density of the fluid, <math display="inline">b_i</math> are the body forces, <math display="inline">\sigma _{ij}</math> are the total stresses given by <math display="inline">\sigma _{ij}=s_{ij}-\delta _{ij}p</math>, <math display="inline">p</math> is the absolute pressure (defined positive in compression) and <math display="inline">s_{ij}</math> are the viscous deviatoric stresses related to the viscosity <math display="inline">\mu </math> by the standard expression
191
192
{| class="formulaSCP" style="width: 100%; text-align: left;" 
193
|-
194
| 
195
{| style="text-align: left; margin:auto;width: 100%;" 
196
|-
197
| style="text-align: center;" | <math>s_{ij}=2\mu \left(\dot \varepsilon _{ij} - \delta _{ij} {1\over 3} {\partial v_k \over \partial x_k}\right) </math>
198
|}
199
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
200
|}
201
202
where <math display="inline">\delta _{ij}</math> is the Kronecker delta and the strain rates <math display="inline">\dot \varepsilon _{ij}</math> are
203
204
{| class="formulaSCP" style="width: 100%; text-align: left;" 
205
|-
206
| 
207
{| style="text-align: left; margin:auto;width: 100%;" 
208
|-
209
| style="text-align: center;" | <math>\dot \varepsilon _{ij}={1\over 2} \left({\partial v_i \over \partial x_j}+{\partial v_j \over \partial x_i}\right) </math>
210
|}
211
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
212
|}
213
214
In the above all variables are defined at the current time <math display="inline">t</math> (current configuration).
215
216
In our work we will solve a ''modified set of governing'' equations derived using a finite calculus (FIC) formulation. The FIC governing equations are [Oñate (1998; 2000; 2004); Oñate ''et al.'' (2001)].
217
218
==Momentum==
219
220
{| class="formulaSCP" style="width: 100%; text-align: left;" 
221
|-
222
| 
223
{| style="text-align: left; margin:auto;width: 100%;" 
224
|-
225
| style="text-align: center;" | <math>r_{m_i} - \underline{{1\over 2} h_j{\partial r_{m_i} \over \partial x_j}}{1\over 2} h_j{\partial r_{m_i} \over \partial x_j}=0 \qquad \hbox{in } \Omega  </math>
226
|}
227
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
228
|}
229
230
==Mass balance==
231
232
{| class="formulaSCP" style="width: 100%; text-align: left;" 
233
|-
234
| 
235
{| style="text-align: left; margin:auto;width: 100%;" 
236
|-
237
| style="text-align: center;" | <math>r_d - \underline{{1\over 2} h_j {\partial r_d \over \partial x_j}}{1\over 2} h_j {\partial r_d \over \partial x_j}=0 \qquad \hbox{in }\Omega  </math>
238
|}
239
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
240
|}
241
242
The problem definition is completed with the following boundary conditions
243
244
{| class="formulaSCP" style="width: 100%; text-align: left;" 
245
|-
246
| 
247
{| style="text-align: left; margin:auto;width: 100%;" 
248
|-
249
| style="text-align: center;" | <math>n_j \sigma _{ij} -t_i + \underline{{1\over 2} h_j n_j r_{m_i}}{1\over 2} h_j n_j r_{m_i}=0 \quad \hbox{on }\Gamma _t </math>
250
|}
251
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
252
|}
253
254
{| class="formulaSCP" style="width: 100%; text-align: left;" 
255
|-
256
| 
257
{| style="text-align: left; margin:auto;width: 100%;" 
258
|-
259
| style="text-align: center;" | <math>v_j - v_j^p =0 \quad \hbox{on }\Gamma _v </math>
260
|}
261
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
262
|}
263
264
and the initial condition is <math display="inline">v_j =v_j^0</math> for <math display="inline">t=t_0</math>. The standard summation convention for repeated indexes is assumed unless otherwise specified.
265
266
In Eqs.(7) and (8) <math display="inline">t_i</math> and <math display="inline">v_j^p</math> are surface tractions and prescribed velocities on the boundaries <math display="inline">\Gamma _t</math> and <math display="inline">\Gamma _v</math>, respectively, <math display="inline">n_j</math> are the components of the unit normal vector to the boundary.
267
268
The <math display="inline">h_i's</math> in above equations are ''characteristic lengths'' of the domain where balance of momentum and mass is enforced. In Eq.(9) these lengths define the domain where equilibrium of boundary tractions is established. Details of the derivation of Eqs.(7)&#8211;(10) can be found in [Oñate (1998; 2000; 2004)].
269
270
Eqs.(7)&#8211;(10) are the starting  point for deriving stabilized finite element methods to solve the incompressible Navier-Stokes equations in a Lagrangian frame of reference using equal order interpolation for the velocity and pressure variables [Idelsohn ''et al.'' (2002; 2003a; 2003b; 2004); Oñate ''et al.'' (2003); Aubry ''et al.'' (2005)]. Application of the FIC formulation to finite element and meshless analysis of fluid flow problems can be found in [García and Oñate (2003); Oñate (2000; 2004); Oñate ''et al.'' (2000; 2004a); Oñate and García (2001); Oñate and Idelsohn (1988)].
271
272
===3.1 Transformation of the Mass Balance Equation. Integral Governing Equations===
273
274
The underlined term in Eq.(8) can be expressed in terms of the momentum equations. The new expression for the mass balance equation is [Oñate (2000); Oñate ''et al.''  (2004b)]
275
276
{| class="formulaSCP" style="width: 100%; text-align: left;" 
277
|-
278
| 
279
{| style="text-align: left; margin:auto;width: 100%;" 
280
|-
281
| style="text-align: center;" | <math>r_d - \sum \limits _{i=1}^{n_d} \tau _i {\partial r_{m_i} \over \partial x_i}=0 </math>
282
|}
283
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
284
|}
285
286
with
287
288
{| class="formulaSCP" style="width: 100%; text-align: left;" 
289
|-
290
| 
291
{| style="text-align: left; margin:auto;width: 100%;" 
292
|-
293
| style="text-align: center;" | <math>\tau _i = {3h_i^2\over 8\mu } </math>
294
|}
295
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
296
|}
297
298
At this stage it is no longer necessary to retain the stabilization terms in the momentum equations. These terms are critical in Eulerian formulations to stabilize the numerical solution for high values of the convective terms. In the Lagrangian formulation the convective terms dissappear from the momentum equations and the FIC terms in these  equations are just useful to derive the form of the mass balance equation given by Eq.(11) and can be disregarded there onwards. Consistently, the stabilization terms are also neglected in the Neuman boundary conditions (eqs.(9)).
299
300
The weighted residual expression of the final form of the momentum and mass balance equations can  be written as
301
302
{| class="formulaSCP" style="width: 100%; text-align: left;" 
303
|-
304
| 
305
{| style="text-align: left; margin:auto;width: 100%;" 
306
|-
307
| style="text-align: center;" | <math>\int _\Omega \delta v_i r_{m_i} d\Omega + \int _{\Gamma _t} \delta v_i (n_j\sigma _{ij} - t_i) d\Gamma =0 </math>
308
|}
309
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
310
|}
311
312
{| class="formulaSCP" style="width: 100%; text-align: left;" 
313
|-
314
| 
315
{| style="text-align: left; margin:auto;width: 100%;" 
316
|-
317
| style="text-align: center;" | <math>\int _\Omega q \left[r_d - \sum \limits _{i=1}^{n_d} \tau _i {\partial r_{m_i} \over \partial x_i}\right]d\Omega =0 </math>
318
|}
319
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
320
|}
321
322
where <math display="inline">\delta v_i</math> and <math display="inline">q</math> are arbitrary weighting functions equivalent to virtual velocity and virtual pressure fields.
323
324
The <math display="inline">r_{m_i}</math> term  in Eq.(14) and the deviatoric stresses and the pressure terms within <math display="inline">r_{m_i}</math> in Eq.(13) are integrated by parts to give
325
326
{| class="formulaSCP" style="width: 100%; text-align: left;" 
327
|-
328
| 
329
{| style="text-align: left; margin:auto;width: 100%;" 
330
|-
331
| style="text-align: center;" | <math>\int _\Omega \left[\delta v_i\rho  {\partial v_i \over \partial t}  + \delta \dot \varepsilon _{ij}(s_{ij}- \delta _{ij}p )\right]d\Omega -  \int _{\Omega } \delta v_i b_i d\Omega - \int _{\Gamma _t} \delta v_i t_id\Gamma  =0 </math>
332
|}
333
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
334
|}
335
336
{| class="formulaSCP" style="width: 100%; text-align: left;" 
337
|-
338
| 
339
{| style="text-align: left; margin:auto;width: 100%;" 
340
|-
341
| style="text-align: center;" | <math>\int _\Omega q {\partial v_i \over \partial x_i} d\Omega + \int _\Omega \left[\sum \limits _{i=1}^{n_d} \tau _i {\partial q \over \partial x_i} r_{m_i}\right]d\Omega =0 </math>
342
|}
343
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
344
|}
345
346
In Eq.(15) <math display="inline">\delta \dot \varepsilon _{ij}</math> are virtual strain rates. Note that the boundary term resulting from the integration by parts of <math display="inline">r_{m_i}</math> in Eq.(16) has been neglected  as the influence of this term in the numerical solution has been found to be negligible.
347
348
===3.2 Pressure Gradient Projection===
349
350
The computation of the residual terms in Eq.(16) can be simplified if we introduce  the pressure gradient projections <math display="inline">\pi _i</math>, defined as
351
352
{| class="formulaSCP" style="width: 100%; text-align: left;" 
353
|-
354
| 
355
{| style="text-align: left; margin:auto;width: 100%;" 
356
|-
357
| style="text-align: center;" | <math>\pi _i = r_{m_i} - {\partial p \over \partial x_i} </math>
358
|}
359
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
360
|}
361
362
We  express now <math display="inline">r_{m_i}</math> in  Eq.(17) in terms of the <math display="inline">\pi _i</math>  which then become additional variables. The system of integral equations is therefore augmented in the necessary number of  equations by imposing that the residual <math display="inline">r_{m_i}</math> vanishes within the analysis domain (in an average sense). This gives the final system of governing equation as:
363
364
{| class="formulaSCP" style="width: 100%; text-align: left;" 
365
|-
366
| 
367
{| style="text-align: left; margin:auto;width: 100%;" 
368
|-
369
| style="text-align: center;" | <math>\int _\Omega \left[\delta v_i\rho {\partial v_i \over \partial t} + \delta \dot \varepsilon _{ij}(s_{ij}- \delta _{ij}p )\right]d\Omega -  \int _{\Omega } \delta v_i b_i d\Omega - \int _{\Gamma _t} \delta v_i t_id\Gamma =0 </math>
370
|}
371
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
372
|}
373
374
{| class="formulaSCP" style="width: 100%; text-align: left;" 
375
|-
376
| 
377
{| style="text-align: left; margin:auto;width: 100%;" 
378
|-
379
| style="text-align: center;" | <math>\int _\Omega q {\partial v_i \over \partial x_i} d\Omega + \int _\Omega \sum \limits _{i=1}^{n_d} \tau _i {\partial q \over \partial x_i} \left({\partial p \over \partial x_i}+\pi _i\right)d\Omega =0 </math>
380
|}
381
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
382
|}
383
384
{| class="formulaSCP" style="width: 100%; text-align: left;" 
385
|-
386
| 
387
{| style="text-align: left; margin:auto;width: 100%;" 
388
|-
389
| style="text-align: center;" | <math>\int _\Omega \delta \pi _i \tau _i \left({\partial p \over \partial x_i}+\pi _i\right)d\Omega =0\qquad \hbox{no sum in }i </math>
390
|}
391
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
392
|}
393
394
with <math display="inline">i,j,k=1,n_d</math>.  In Eqs.(20) <math display="inline">\delta \pi _i</math> are appropriate weighting functions and the <math display="inline">\tau _i</math> weights are introduced for symmetry reasons.
395
396
==4 Finite Element Discretization==
397
398
We choose equal order <math display="inline">C^\circ </math> continuous  interpolations of the velocities, the pressure and the pressure gradient projections <math display="inline">\pi _i</math> over each element with <math display="inline">n</math> nodes. The interpolations are written as
399
400
{| class="formulaSCP" style="width: 100%; text-align: left;" 
401
|-
402
| 
403
{| style="text-align: left; margin:auto;width: 100%;" 
404
|-
405
| style="text-align: center;" | <math>v_i = \sum \limits _{j=1}^n N_j \bar v_i^j \quad , \quad p = \sum \limits _{j=1}^n N_j \bar p^j\quad , \quad \pi _i = \sum \limits _{j=1}^n N_j \bar \pi _i^j </math>
406
|}
407
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
408
|}
409
410
where <math display="inline">\bar {(\cdot )}^j</math> denotes nodal variables and <math display="inline">N_j</math> are the  shape functions [Zienkiewicz ''et al.'' (2006)]. More details of the mesh discretization process and the choice of shape functions are given in Section 7.
411
412
Substituting the approximations (21) into Eqs.(19&#8211;20) and choosing a Galerkin form with <math display="inline">\delta v_i =q=\delta \pi _i =N_i</math> leads to the following system of discretized equations
413
414
{| class="formulaSCP" style="width: 100%; text-align: left;" 
415
|-
416
| 
417
{| style="text-align: left; margin:auto;width: 100%;" 
418
|-
419
| style="text-align: center;" | <math>{\boldsymbol M}\dot{\bar{\boldsymbol v}} + {\boldsymbol K} \bar {\boldsymbol v} - {\boldsymbol G} \bar {\boldsymbol p}- {\boldsymbol f}={\boldsymbol 0}</math>
420
|}
421
| style="width: 5px;text-align: right;white-space: nowrap;" | (22a)
422
|}
423
424
{| class="formulaSCP" style="width: 100%; text-align: left;" 
425
|-
426
| 
427
{| style="text-align: left; margin:auto;width: 100%;" 
428
|-
429
| style="text-align: center;" | <math>\displaystyle {\boldsymbol G}^T \bar {\boldsymbol v} + {\boldsymbol L}\bar {\boldsymbol p}+{\boldsymbol Q}\bar {\boldsymbol \pi }={\boldsymbol 0}</math>
430
|}
431
| style="width: 5px;text-align: right;white-space: nowrap;" | (22b)
432
|}
433
434
{| class="formulaSCP" style="width: 100%; text-align: left;" 
435
|-
436
| 
437
{| style="text-align: left; margin:auto;width: 100%;" 
438
|-
439
| style="text-align: center;" | <math>\displaystyle {\boldsymbol Q}^T \bar {\boldsymbol p} + \hat {\boldsymbol M}\bar {\boldsymbol \pi }={\boldsymbol 0}</math>
440
|}
441
| style="width: 5px;text-align: right;white-space: nowrap;" | (22c)
442
|}
443
444
The matrices and vectors in Eqs.(22) are assembled from the element contributions given by (for 2D problems)
445
446
{| class="formulaSCP" style="width: 100%; text-align: left;" 
447
|-
448
| 
449
{| style="text-align: left; margin:auto;width: 100%;" 
450
|-
451
| style="text-align: center;" | <math>\displaystyle {\boldsymbol M}_{ij}= \int _{\Omega ^e} \rho{\boldsymbol  N}_i {\boldsymbol N}_j d\Omega \quad ,\quad  {\boldsymbol K}_{ij} =\int _{\Omega ^e} {\boldsymbol B}_i^T {\boldsymbol D} {\boldsymbol B}_j d\Omega </math>
452
|-
453
| style="text-align: center;" | <math> {\boldsymbol D} =\mu \left[\begin{matrix}2 &0&0\\ 0&2&0\\ 0&0&1\\\end{matrix}\right]\quad ,\quad  {\boldsymbol B}_i =\left[\begin{matrix}\displaystyle {\partial N_i \over \partial x_1}&0\\ 0 & \displaystyle {\partial N_i \over \partial x_2}\\ \displaystyle {\partial N_i \over \partial x_2} & \displaystyle {\partial N_i \over \partial x_1}\\\end{matrix}\right]</math>
454
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
455
|-
456
| style="text-align: center;" | <math> \displaystyle L_{ij}= \int _{\Omega ^e} \tau _k {\partial N_i \over \partial x_k} {\partial N_j  \over \partial x_k}d\Omega \quad ,\quad \displaystyle {\boldsymbol Q}= [{\boldsymbol Q}^1,{\boldsymbol Q}^2] \quad ,\quad  \displaystyle Q_{ij}^k = \int _{\Omega ^e}\tau _k {\partial N_i \over \partial x_k} N_jd\Omega </math>
457
|-
458
| style="text-align: center;" | 
459
|-
460
| style="text-align: center;" | <math> \displaystyle \hat {\boldsymbol M}= \left[\begin{matrix}\hat {\boldsymbol M}^1 &{\boldsymbol 0}\\  {\boldsymbol 0} & \hat {\boldsymbol M}^2\\\end{matrix}\right]\quad ,\quad  \hat {\boldsymbol M}^k_{ij} = \int _{\Omega ^e} \tau _k N_i N_j d\Omega  \quad ,\quad \displaystyle {\boldsymbol G}_{ij}= \int _{\Omega ^e} {\boldsymbol B}_i^T {\boldsymbol m} N_j d\Omega </math>
461
|-
462
| style="text-align: center;" | <math> \displaystyle {\boldsymbol f}_i = \int _{\Omega ^e} N_i {\boldsymbol b}d\Omega + \int _{\Gamma ^e_t}N_i {\boldsymbol t} d\Gamma \quad ,\quad  {\boldsymbol b}=[b_1,b_2]^T \quad ,\quad {\boldsymbol t}=[t_1,t_2]^T  </math>
463
|}
464
|}
465
466
with <math display="inline">i,j=1,n</math> and <math display="inline">k,l=1,2</math>.
467
468
In above '''B''' is the strain rate matrix and <math display="inline">{\boldsymbol m} = [1,1,0]^T</math> for 2D problems.
469
470
==5 Fractional Step Method for Fluid-Structure Interaction Analysis==
471
472
A simple and effective iterative algorithm can be obtained by splitting the pressure from the momentum equations as follows
473
474
{| class="formulaSCP" style="width: 100%; text-align: left;" 
475
|-
476
| 
477
{| style="text-align: left; margin:auto;width: 100%;" 
478
|-
479
| style="text-align: center;" | <math>\bar {\boldsymbol v}^* = \bar {\boldsymbol v}^n -\Delta t {\boldsymbol M}^{-1}[{\boldsymbol K} {\boldsymbol v}^{n+1,j-1} -{\boldsymbol G} \mathbf{p}^n - {\boldsymbol f}^{n+1}]</math>
480
|}
481
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
482
|}
483
484
{| class="formulaSCP" style="width: 100%; text-align: left;" 
485
|-
486
| 
487
{| style="text-align: left; margin:auto;width: 100%;" 
488
|-
489
| style="text-align: center;" | <math>\bar{\boldsymbol v}^{n+1,j}= \bar{\boldsymbol v}^* + \Delta t {\boldsymbol M}^{-1}{\boldsymbol G}\delta \bar{\boldsymbol p}</math>
490
|}
491
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
492
|}
493
494
where <math display="inline">\delta \bar{\boldsymbol p}</math> denotes a pressure increment. In above equations and in the following superindex <math display="inline">n</math> refers to the time step whereas superindex <math display="inline">j</math> denotes an iteration number within each time step.
495
496
The value of <math display="inline">\bar {\boldsymbol v}^{n+1,j}</math> from Eq.(28b) is substituted now into Eq.(22b) to give
497
498
{| class="formulaSCP" style="width: 100%; text-align: left;" 
499
|-
500
| 
501
{| style="text-align: left; margin:auto;width: 100%;" 
502
|-
503
| style="text-align: center;" | <math>{\boldsymbol G}^T\bar {\boldsymbol v}^* + \Delta t {\boldsymbol S}\delta \bar{\boldsymbol p} + {\boldsymbol L} \bar{\boldsymbol p}^{n+1,j}+ {\boldsymbol Q}\bar {\boldsymbol \pi }^{n+1,j-1}={\boldsymbol 0}</math>
504
|}
505
| style="width: 5px;text-align: right;white-space: nowrap;" | (26a)
506
|}
507
508
where
509
510
{| class="formulaSCP" style="width: 100%; text-align: left;" 
511
|-
512
| 
513
{| style="text-align: left; margin:auto;width: 100%;" 
514
|-
515
| style="text-align: center;" | <math>{\boldsymbol S} = {\boldsymbol G}^T {\boldsymbol M}^{-1}{\boldsymbol G} </math>
516
|}
517
| style="width: 5px;text-align: right;white-space: nowrap;" | (26b)
518
|}
519
520
Typically matrix '''S''' is computed using a diagonal matrix <math display="inline">{\boldsymbol M} = {\boldsymbol    M}_d</math>, where the subscript <math display="inline">d</math> denotes hereonward a diagonal matrix.
521
522
An alternative is to approximate matrix '''S''' by a Laplacian matrix. This reduces considerably the bandwith of '''S'''. The disadvantage is that the pressure increment must be then prescribed  on the free surface and this reduces the accuracy in the satisfaction of the incompressibility condition in these regions (see Remark 1).
523
524
A semi-implicit algorithm can  be derived as follows. For each iteration:<br/>
525
526
'''Step 1''' Compute <math display="inline">{\boldsymbol v}^*</math>  from Eq.(24) with <math display="inline">{\boldsymbol M}={\boldsymbol    M}_d</math>. For the first iteration <math display="inline">{\boldsymbol p}^1</math> is taken as the hydrostatic pressure.<br/>
527
528
'''Step 2''' Compute <math display="inline">\delta \bar {\boldsymbol p}</math> and <math display="inline">{\boldsymbol p}^{n+1}</math> from Eq.(26a) as
529
530
{| class="formulaSCP" style="width: 100%; text-align: left;" 
531
|-
532
| 
533
{| style="text-align: left; margin:auto;width: 100%;" 
534
|-
535
| style="text-align: center;" | <math>\delta \bar {\boldsymbol p} =-({\boldsymbol L}+\Delta t  {\boldsymbol S})^{-1} [{\boldsymbol G}^T\bar{\boldsymbol v}^* +{\boldsymbol Q}\bar {\boldsymbol \pi }^{n+1,j-1}+ {\boldsymbol L} \bar {\boldsymbol p}^n]</math>
536
|}
537
| style="width: 5px;text-align: right;white-space: nowrap;" | (27a)
538
|}
539
540
The pressure <math display="inline">\bar {\boldsymbol p}^{n+1,j}</math> is computed as follows
541
542
{| class="formulaSCP" style="width: 100%; text-align: left;" 
543
|-
544
| 
545
{| style="text-align: left; margin:auto;width: 100%;" 
546
|-
547
| style="text-align: center;" | <math>\bar {\boldsymbol p}^{n+1,j} = \bar{\boldsymbol p}^n + \delta \bar{\boldsymbol p} </math>
548
|}
549
| style="width: 5px;text-align: right;white-space: nowrap;" | (27b)
550
|}
551
552
'''Step 3''' Compute <math display="inline"> \bar{\boldsymbol v}^{n+1,j}</math>  from Eq.(25) with <math display="inline">{\boldsymbol M}={\boldsymbol M}_d</math>
553
554
'''Step 4''' Compute <math display="inline">  \bar{\boldsymbol \pi }^{n+1,j}</math>  from Eq.(22c) as
555
556
{| class="formulaSCP" style="width: 100%; text-align: left;" 
557
|-
558
| 
559
{| style="text-align: left; margin:auto;width: 100%;" 
560
|-
561
| style="text-align: center;" | <math>\bar{\boldsymbol \pi }^{n+1,j}=- \hat {\boldsymbol M}_d^{-1} {\boldsymbol Q}^T \bar {\boldsymbol p}^{n+1,j} </math>
562
|}
563
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
564
|}
565
566
'''Step 5''' Solve for the motion of the structure due to the fluid flow forces.<br/>
567
568
This implies solving the dynamic equations of motion for the structure written as
569
570
{| class="formulaSCP" style="width: 100%; text-align: left;" 
571
|-
572
| 
573
{| style="text-align: left; margin:auto;width: 100%;" 
574
|-
575
| style="text-align: center;" | <math>{\boldsymbol M}_s \ddot {\boldsymbol d}+ {\boldsymbol K}_s {\boldsymbol d}={\boldsymbol f}_{ext} </math>
576
|}
577
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
578
|}
579
580
where <math display="inline">{\boldsymbol d}</math> and <math display="inline">\ddot {\boldsymbol d}</math> are respectively the displacement and acceleration vectors of the nodes discretizing the structure, <math display="inline">{\boldsymbol M}_s</math> and <math display="inline">{\boldsymbol K}_s</math> are the mass and stiffness matrices of the structure and <math display="inline">{\boldsymbol f}_{ext}</math> is the vector of external nodal forces accounting for the fluid flow forces induced by the pressure and the viscous stresses. Clearly the main driving forces for the motion of the structure is the fluid pressure which acts as normal surface traction on the structure. Indeed Eq.(29) can be augmented with an appropriate damping term. The form of all the relevant matrices and vectors can be found in standard books on FEM for structural analysis [Zienkiewicz and Taylor (2005)].
581
582
Solution of Eq.(29) in time can be performed using implicit or fully explicit time integration algorithms. In both cases the values of the nodal displacements, velocities and accelerations of the structure at <math display="inline">t^{n+1}</math> are found for the <math display="inline">j</math>th iteration.<br/>
583
584
'''Step 6''' Update the mesh nodes in a Lagrangian manner. From the definition of the velocity <math display="inline">v_i ={\partial u_i \over \partial t}</math> it is deduced.
585
586
{| class="formulaSCP" style="width: 100%; text-align: left;" 
587
|-
588
| 
589
{| style="text-align: left; margin:auto;width: 100%;" 
590
|-
591
| style="text-align: center;" | <math>{\boldsymbol x}_i^{n+1,j} = {\boldsymbol x}_i^{n}+\bar {\boldsymbol v}_i^{n+1,j} \Delta t </math>
592
|}
593
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
594
|}
595
596
'''Step 7''' Check the convergence of the velocity and pressure fields in the fluid and the displacements strains and stresses in the structure. If convergence is achieved move to the next time step, otherwise return to step 1 for the next iteration with <math display="inline">j+1 \to j</math>.
597
598
Despite the motion of the nodes within the iterative process, in general there is no need to regenerate the mesh at each iteration. A new mesh is typically generated  after a prescribed number of converged time steps, or when  the nodal displacements induce significant geometrical distortions in some elements. ''In the examples presented  the mesh in the fluid domain has   been regenerated at the begining of each time step''.
599
600
Note that solution of steps 1, 3 and 4 does not require the solution of  a system of equations as a diagonal form is chosen for <math display="inline">\boldsymbol M</math> and <math display="inline">\hat {\boldsymbol M}</math>.
601
602
In the examples presented in the paper the time increment size has been chosen as
603
604
{| class="formulaSCP" style="width: 100%; text-align: left;" 
605
|-
606
| 
607
{| style="text-align: left; margin:auto;width: 100%;" 
608
|-
609
| style="text-align: center;" | <math>\Delta t =\min (\Delta t_i ) \quad \hbox{with}\quad \Delta t_i ={h_i^{\min } \over \vert {\boldsymbol v}\vert } </math>
610
|}
611
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
612
|}
613
614
where <math display="inline">h_i^{\min }</math> is the distance between node <math display="inline">i</math> and the closest node in the mesh.
615
616
Although not explicitely mentioned all matrices and vectors in Eqs.(27)&#8211;(31) are computed at the  configuration <math display="inline">\Omega ^{n+1,j}</math>. This  means that the integration domain changes for each iteration and, hence,  all the terms involving space derivatives  must be updated at each iteration. An alternative is to refer the integrations domain at each time step to <math display="inline">\Omega ^n</math>. The jacobian matrix is needed in this case to transform the space derivatives and the differencial of volume from <math display="inline">\Omega ^{n+1,j}</math> to <math display="inline">\Omega ^n</math> at each iteration.
617
618
<br/>
619
620
'''Remark 1'''. The boundary conditions are applied as follows. No condition is applied in the computation of the fractional velocities <math display="inline">{\boldsymbol v}^*</math> in Eq.(25a). The prescribed velocities at the boundary are applied when solving for <math display="inline">\bar{\boldsymbol    v}^{n+1,j}</math> in step 3.
621
622
The form of '''S''' in Eq.(26b) avoids the need to prescribing the pressure at the boundary nodes. It is however recommended to fix the pressure at a point in the analysis domain so as to ensure the correct definition of the pressure field for all problems. An alternative  procedure is to approximate  '''S''' by a Laplacian matrix [Oñate ''et al.'' (2004), Idelsohn ''et al.'' (2004)]. The pressure increment on the free surface must be prescribed in this case to the value <math display="inline">2\mu {\partial \Delta \bar v_n\over    \partial n}</math> where <math display="inline">\Delta \bar v_n={\boldsymbol n}^T \Delta \bar{\boldsymbol v}</math> is the velocity increment along the normal direction to the boundary and <math display="inline">\Delta \bar {\boldsymbol v}= \bar{\boldsymbol v}^{n+1,j}- \bar{\boldsymbol v}^n</math>.       We have found however that the form of  '''S'''   given by Eq.(26b) allows to satisfy better the incompressibility condition   in the vecinity of the free surfaces, thereby leading to smaller   volume losses in transient problems involving large motions of the free surface.
623
624
==6 Generation of a new mesh==
625
626
The motion of the solid is governed by the action of the fluid flow forces induced by the pressure and the viscous stresses acting at the solid boundary, as mentioned above.
627
628
The  condition of prescribed velocities  at the solid boundaries in the PFEM are  applied in strong form to the boundary nodes. These nodes might belong to fixed external boundaries or to moving boundaries linked to the interacting solids. Contact between water particles and the solid boundaries is accounted for by the incompressibility condition which ''naturally prevents the penetration of the water nodes into the solid boundaries''. This simple way to treat the water-wall contact is another attractive feature of the PFEM formulation.
629
630
==7 Identification of boundary surfaces==
631
632
One of the key points for the success of the Lagrangian flow formulation  described here is the fast regeneration of a mesh at every time step on the basis of the position of the nodes in the space domain. In our work the mesh is generated using the so called extended Delaunay tesselation (EDT) presented in [Idelsohn ''et al.'' (2003a; 2003c; 2004)]. The EDT allows one to generate non standard meshes combining elements of  arbitrary polyhedrical shapes  (triangles, quadrilaterals and other polygons in 2D and tetrahedra, hexahedra and arbitrary polyhedra in 3D) in a computing time of order <math display="inline">n</math>, where <math display="inline">n</math> is the total number of nodes in the mesh (Figure 2). The <math display="inline">C^\circ </math> continuous shape functions of the elements can be simply obtained using the so called meshless finite element interpolation (MFEM). Details of the mesh generation procedure and the derivation of the MFEM shape functions can be found in [Idelsohn ''et al.'' (2003a; 2003c; 2004)].
633
634
Once the new mesh has been generated  the numerical solution is found at each time step using the fractional step algorithm described in the previous section.
635
636
<div id='img-2'></div>
637
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
638
|-
639
|[[Image:Draft_Samper_662632188-Figure3.png|510px|Generation of non standard meshes combining different polygons (in 2D) and polyhedra (in 3D) using the extended Delaunay technique.]]
640
|- style="text-align: center; font-size: 75%;"
641
| colspan="1" | '''Figure 2:''' Generation of non standard meshes combining different polygons (in 2D) and polyhedra (in 3D) using the extended Delaunay technique.
642
|}
643
644
==8 Identification of Boundary Surfaces==
645
646
One of the main tasks  in the PFEM is the correct definition of the boundary domain. Sometimes, boundary nodes are explicitly identified  differently from internal nodes. In other cases, the total set of nodes is the only information available and the algorithm must recognize the boundary nodes.
647
648
The  extended Delaunay partition makes it easier to recognize boundary nodes. Considering that the nodes follow a variable <math display="inline">h(x)</math>  distribution, where <math display="inline">h(x)</math> is typically the minimum distance between two nodes, the following criterion has been used. ''All nodes on an empty sphere with a radius  greater than <math>\alpha h</math>, are considered as boundary nodes''. In practice <math display="inline">\alpha </math>  is a parameter close to, but greater than one. This criterion is coincident with the Alpha Shape concept [Edelsbrunner and Mucke (1999)].
649
650
Figure 3 shows example of the boundary recognition using the Alpha Shape technique.
651
652
Once a decision has been made concerning which  nodes are on the boundaries, the boundary surface is defined by  all the polyhedral surfaces (or polygons in 2D) having all their nodes on the boundary and belonging to just one polyhedron.
653
654
The correct boundary surface is important to define the  normal external to the surface. Furthermore, in weak forms (Galerkin) such as those used here a correct evaluation of the volume domain is also important. In the criterion proposed above, the error in the boundary surface definition is proportional to <math display="inline">h</math> which is an acceptable error.
655
656
The method described also allows one to identify isolated fluid particles outside the main fluid domain. These particles are treated as part of the external boundary where the pressure is fixed to the atmospheric value (Figure 3) .
657
658
A practical application of the method for identifying free surface particles is shown in Figure 4. The example corresponds to the analysis of the motion of a fluid within an oscillating ellipsoidal container.
659
660
<div id='img-3'></div>
661
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
662
|-
663
|[[Image:Draft_Samper_662632188-Figure5.png|600px|Identification of individual particles (or a group of particles) starting from a given collection of nodes.]]
664
|- style="text-align: center; font-size: 75%;"
665
| colspan="1" | '''Figure 3:''' Identification of individual particles (or a group of particles) starting from a given collection of nodes.
666
|}
667
668
<div id='img-4'></div>
669
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
670
|-
671
|[[Image:Draft_Samper_662632188-Figure6b.png|600px|Motion of a liquid within an oscillating container. Position of the liquid particles at two different times. ]]
672
|- style="text-align: center; font-size: 75%;"
673
| colspan="1" | '''Figure 4:''' Motion of a liquid within an oscillating container. Position of the liquid particles at two different times. 
674
|}
675
676
<div id='img-5'></div>
677
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
678
|-
679
|[[Image:Draft_Samper_662632188-Figure5.png|600px|2D simulation of the penetration and evolution of a cube and a cylinder in a water container. The colours denote the different sizes of the elements at several times.]]
680
|- style="text-align: center; font-size: 75%;"
681
| colspan="1" | '''Figure 5:''' 2D simulation of the penetration and evolution of a cube and a cylinder in a water container. The colours denote the different sizes of the elements at several times.
682
|}
683
684
==9 Examples==
685
686
The examples chosen show the applicability of the PFEM to solve problems involving large fluid motions and FSI situations.
687
688
===9.1 Rigid objects filling into water===
689
690
The analysis of the motion of submerged or floating objects in water is of great interest in many areas of harbour and coastal engineering and naval architecture among others.
691
692
Figure 5 shows the penetration and evolution of a cube and a cylinder in a container with water. The colours denote the different sizes of the elements at several times. Figure 6 shows that the mesh generation algorithm ensures a smaller size of elements in the vicinity of the moving bodies during their motion.
693
694
<div id='img-6'></div>
695
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
696
|-
697
|[[Image:Draft_Samper_662632188-Figure6.png|600px|Detail of element sizes during the motion of a rigid cylinder within   a water container.]]
698
|- style="text-align: center; font-size: 75%;"
699
| colspan="1" | '''Figure 6:''' Detail of element sizes during the motion of a rigid cylinder within   a water container.
700
|}
701
702
<div id='img-7'></div>
703
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
704
|-
705
|[[Image:Draft_Samper_662632188-Figure7.png|600px|Propagation of a wave generated in a test canal impacting with a   vertical wall.]]
706
|- style="text-align: center; font-size: 75%;"
707
| colspan="1" | '''Figure 7:''' Propagation of a wave generated in a test canal impacting with a   vertical wall.
708
|}
709
710
===9.2 Impact of water streams on rigid structures===
711
712
Figure 7 shows the simulation of the propagation of a wave generated in a test canal impacting on a vertical wall. Figure 8 shows a comparison of the experimental and numerical values of the water pressure on the vertical wall. The overall agreement is noticeable.
713
714
Figure 9 shows an example of a wave breaking within a prismatic container including a vertical cylinder. Finally Figure 10 shows the impact of a wave on a vertical column sustained by four pillars. The objective of this example was to model the impact of a water stream on a bridge pier accounting for the foundation effects.
715
716
<div id='img-8'></div>
717
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
718
|-
719
|[[Image:Draft_Samper_662632188-diap8.png|600px|Comparison of experimental and numerical water pressures at the   vertical wall for the example of Figure 7.]]
720
|- style="text-align: center; font-size: 75%;"
721
| colspan="1" | '''Figure 8:''' Comparison of experimental and numerical water pressures at the   vertical wall for the example of Figure 7.
722
|}
723
724
<div id='img-9'></div>
725
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
726
|-
727
|[[Image:Draft_Samper_662632188-diap9.png|600px|]]
728
|[[Image:Draft_Samper_662632188-diap10.png|600px|Evolution of a water column within a prismatic container including a   vertical cylinder.]]
729
|- style="text-align: center; font-size: 75%;"
730
| colspan="2" | '''Figure 9:''' Evolution of a water column within a prismatic container including a   vertical cylinder.
731
|}
732
733
<div id='img-10'></div>
734
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
735
|-
736
|[[Image:Draft_Samper_662632188-diap17.png|600px|Impact of a wave on a prismatic column on a slab sustained by four   pillars.]]
737
|- style="text-align: center; font-size: 75%;"
738
| colspan="1" | '''Figure 10:''' Impact of a wave on a prismatic column on a slab sustained by four   pillars.
739
|}
740
741
===9.3 Dragging of objects by water streams===
742
743
Figure 11 shows the effect of a wave impacting on a cube representing a vehicle. This situation is typical in  flooding and Tsunami situations.
744
745
<div id='img-11'></div>
746
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
747
|-
748
|[[Image:Draft_Samper_662632188-Figure11.png|600px|Dragging of a cubic object by a water stream.]]
749
|- style="text-align: center; font-size: 75%;"
750
| colspan="1" | '''Figure 11:''' Dragging of a cubic object by a water stream.
751
|}
752
753
===9.4 Impact of sea waves on breakwater and piers===
754
755
Figure 12 shows the simulation of the impact of a wave generated in an experimental flume on a collection of water motion in the vicinity of the rocks represent a breakwater. Details of the  water-rock interaction are shown in Figure 13.
756
757
Figure 14 shows a 3D analysis of a similar problem. Figure 15 shows the 3D simulation of the interaction of a wave with a vertical pier formed by a collection of reinforced concrete cylinders.
758
759
The last examples shown in Figures 16 and 17 evidence the potential of the PFEM to solve 3D problems involving complex interactions between water  and solid objects. Figure 16 shows the simulation of the falling of two tetrapods in a water container. Finally, Figure 17 shows the motion of a collection of ten tetrapods placed in a slope under an incident wave.
760
761
<div id='img-12'></div>
762
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
763
|-
764
|[[Image:Draft_Samper_662632188-Figure12.png|600px|Generation and impact of a wave on a collection of   rocks in a breakwater.]]
765
|- style="text-align: center; font-size: 75%;"
766
| colspan="1" | '''Figure 12:''' Generation and impact of a wave on a collection of   rocks in a breakwater.
767
|}
768
769
<div id='img-13'></div>
770
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
771
|-
772
|[[Image:Draft_Samper_662632188-Figure13.png|600px|Detail of the impact of a wave on a breakwater. The arrows indicate   the water force on the rocks at different instants.]]
773
|- style="text-align: center; font-size: 75%;"
774
| colspan="1" | '''Figure 13:''' Detail of the impact of a wave on a breakwater. The arrows indicate   the water force on the rocks at different instants.
775
|}
776
777
<div id='img-14'></div>
778
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
779
|-
780
|[[Image:Draft_Samper_662632188-Figure14.png|600px|3D simulation of the impact of a wave on a collection of rocks in a breakwater.]]
781
|- style="text-align: center; font-size: 75%;"
782
| colspan="1" | '''Figure 14:''' 3D simulation of the impact of a wave on a collection of rocks in a breakwater.
783
|}
784
785
<div id='img-15'></div>
786
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
787
|-
788
|[[Image:Draft_Samper_662632188-Figure15.png|600px|Interaction of a wave with a vertical pier formed by   reinforced concrete cylinders.]]
789
|- style="text-align: center; font-size: 75%;"
790
| colspan="1" | '''Figure 15:''' Interaction of a wave with a vertical pier formed by   reinforced concrete cylinders.
791
|}
792
793
<div id='img-16'></div>
794
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
795
|-
796
|[[Image:Draft_Samper_662632188-Figure16.png|600px|Motion of two tetrapods falling in a water container.]]
797
|- style="text-align: center; font-size: 75%;"
798
| colspan="1" | '''Figure 16:''' Motion of two tetrapods falling in a water container.
799
|}
800
801
==10 Conclusions==
802
803
The particle finite element method (PFEM) is ideal to treat problems involving fluids with free surface and submerged or floating structures within a unified Lagrangian finite element framework. Problems such as the analysis of fluid-structure interaction, large motion of  fluid or solid particles, surface waves, water splashing, separation of water drops, etc. can be easily solved with the PFEM. The success of the method lies in the accurate and efficient solution of the equations of an incompressible fluid and of solid dynamics using a stabilized finite element method  allowing the use of low order elements with equal order interpolation for all the variables. Other essential solution ingredients are the efficient regeneration of the finite element mesh using an extended Delaunay tesselation, the meshless finite element interpolation (MFEM) and the identification of the boundary nodes using an Alpha Shape type technique. The examples presented have shown the potential of the PFEM for solving a wide class of practical FSI problems.
804
805
<div id='img-17'></div>
806
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
807
|-
808
|[[Image:Draft_Samper_662632188-diap25.png|600px|]]
809
|[[Image:Draft_Samper_662632188-diap26.png|600px|Motion of ten tetrapods on a slope under an incident wave.]]
810
|- style="text-align: center; font-size: 75%;"
811
| colspan="2" | '''Figure 17:''' Motion of ten tetrapods on a slope under an incident wave.
812
|}
813
814
==Acknowledgements==
815
816
Thanks are given to Dr. F. Del Pin, Dr. N. Calvo and Ms. M. de Mier for many useful suggestions.
817
818
==References==
819
820
<div id="cite-1"></div>
821
[[#citeF-1|[1]]] Aubry R, Idelsohn SR, Oñate E (2005) Particle finite element   method in fluid mechanics including thermal convection-diffusion. Computer   & Structures 83(17-18):1459&#8211;1475
822
823
<div id="cite-2"></div>
824
[[#citeF-2|[2]]]  Codina R, Zienkiewicz OC (2002) CBS versus GLS stabilization of   the incompressible Navier-Stokes equations and the role of the time step as   stabilization parameter. Communications in Numerical Methods in Engineering   18(2):99&#8211;112
825
826
<div id="cite-3"></div>
827
[[#citeF-3|[3]]]  Donea J, Huerta A (2003) Finite element method for flow problems. J. Wiley.
828
829
<div id="cite-4"></div>
830
[[#citeF-4|[4]]]  Edelsbrunner H, Mucke EP (1999) Three dimensional alpha shapes. ACM   Trans. Graphics 13:43&#8211;72
831
832
<div id="cite-5"></div>
833
[[#citeF-5|[5]]]  García J,  Oñate E (2003) An unstructured finite element   solver for ship hydrodynamic problems. J. Appl. Mech. 70:18&#8211;26 January
834
835
<div id="cite-6"></div>
836
[[#citeF-6|[6]]] Idelsohn SR, Oñate E, Del Pin F,  Calvo N (2002) Lagrangian formulation: the only way to solve some free-surface fluid mechanics problems. Fith World Congress on Computational Mechanics, Mang HA, Rammerstorfer FG, Eberhardsteiner J (eds), July 7&#8211;12, Viena, Austria
837
838
<div id="cite-7"></div>
839
[[#citeF-7|[7]]]  Idelsohn SR, Oñate E, Calvo N, Del Pin F (2003a) The meshless finite element method.  Int. J. Num. Meth. Engng.  58(6):893&#8211;912
840
841
<div id="cite-8"></div>
842
[[#citeF-8|[8]]] Idelsohn SR, Oñate E, Del Pin F (2003b) A lagrangian meshless finite element method applied to fluid-structure interaction problems. Computer and Structures 81:655&#8211;671
843
844
<div id="cite-9"></div>
845
[[#citeF-9|[9]]] Idelsohn SR, Calvo N, Oñate E (2003c) Polyhedrization of an arbitrary point set. Comput. Method Appl. Mech. Engng.  192(22-24):2649&#8211;2668
846
847
<div id="cite-10"></div>
848
[[#citeF-10|[10]]]   Idelsohn SR, Oñate E, Del Pin F (2004) The particle finite   element method: a powerful tool to solve incompressible flows with   free-surfaces and breaking waves. Int. J. Num. Meth. Engng. 61:964-989
849
850
<div id="cite-11"></div>
851
[[#citeF-11|[11]]] Oñate E  (1998) Derivation of stabilized equations for advective-diffusive transport and fluid flow problems. Comput. Meth. Appl. Mech. Engng. 151:233&#8211;267
852
853
<div id="cite-12"></div>
854
[[#citeF-12|[12]]] Oñate E, (2000) A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. Comp. Meth. Appl. Mech. Engng. 182(1&#8211;2):355&#8211;370
855
856
<div id="cite-13"></div>
857
[[#citeF-13|[13]]]  Oñate E (2004) Possibilities of finite calculus in computational mechanics. Int. J. Num. Meth. Engng. 60(1):255&#8211;281
858
859
<div id="cite-14"></div>
860
[[#citeF-14|[14]]]  Oñate E,  Idelsohn SR (1998) A mesh free finite point method for advective-diffusive transport and fluid flow problems. Computational Mechanics 21:283&#8211;292
861
862
<div id="cite-15"></div>
863
[[#citeF-15|[15]]]  Oñate E, García J (2001) A finite element method for  fluid-structure interaction with surface waves using a finite calculus formulation. Comput. Meth. Appl. Mech. Engrg. 191:635&#8211;660
864
865
<div id="cite-16"></div>
866
[[#citeF-16|[16]]] Oñate E, Sacco C,  Idelsohn SR (2000) A finite point method for   incompressible flow problems.  Comput. Visual. in Science 2:67&#8211;75
867
868
<div id="cite-17"></div>
869
[[#citeF-17|[17]]]  Oñate E, Idelsohn SR, Del Pin F (2003) Lagrangian formulation for   incompressible fluids using finite calculus and the finite element   method. Numerical Methods for Scientific Computing Variational Problems and   Applications, Y Kuznetsov, P Neittanmaki, O Pironneau (Eds.), CIMNE, Barcelona
870
871
<div id="cite-18"></div>
872
[[#citeF-18|[18]]] Oñate E, García J, Idelsohn SR (2004a) Ship   hydrodynamics. Encyclopedia of Computational Mechanics, E Stein, R de Borst,   T.J.R. Hughes (Eds), J. Wiley.
873
874
<div id="cite-19"></div>
875
[[#citeF-19|[19]]] Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004b) The particle   finite element method. An overview. Int. J. Comput. Methods 1(2):267-307
876
877
<div id="cite-20"></div>
878
[[#citeF-20|[20]]]  Zienkiewicz OC, Taylor RL, Nithiarasu P (2006) The finite element   method for fluid dynamics,   Elsevier
879
880
<div id="cite-21"></div>
881
[[#citeF-21|[21]]]  Zienkiewicz OC, Taylor RL (2005) The finite element method for   solid and structural mechanics. Elsevier
882

Return to Onate et al 2006f.

Back to Top

Document information

Published on 01/01/2006

Licence: CC BY-NC-SA license

Document Score

0

Views 65
Recommendations 0

Share this document