This work proposes a novel finite volume paradigm, the face-centred finite volume (FCFV) method. Contrary to the popular vertex (VCFV) and cell (CCFV) centred finite volume methods, the novel FCFV defines the solution on the mesh faces (edges in 2D) to construct locally-conservative numerical schemes. The idea of the FCFV method stems from a hybridisable discontinuous Galerkin (HDG) formulation with constant degree of approximation, thus inheriting the convergence properties of the classical HDG. The resulting FCFV features a global problem in terms of a piecewise constant function defined on the faces of the mesh. The solution and its gradient in each element are then recovered by solving a set of independent element-by-element problems. The mathematical formulation of FCFV for Poisson and Stokes equation is derived and numerical evidence of optimal convergence in 2D and 3D is provided. Numerical examples are presented to illustrate the accuracy, efficiency and robustness of the proposed methodology. The results show that, contrary to other FV methods, the accuracy of the FCFV method is not sensitive to mesh distortion and stretching. In addition, the FCFV method shows its better performance, accuracy and robustness using simplicial elements, facilitating its application to problems involving complex geometries in 3D.
Abstract
This work proposes a novel finite volume paradigm, the face-centred finite volume (FCFV) method. Contrary to the popular vertex (VCFV) and cell (CCFV) [...]
The first superconvergent hybridisable discontinuous Galerkin method for linear elastic problems capable of using the same degree of approximation for both the primal and mixed variables is presented. The key feature of the method is the strong imposition of the symmetry of the stress tensor by means of the well known and extensively used Voigt notation, circumventing the use of complex mathematical concepts to enforce the symmetry of the stress tensor either weakly or strongly. A novel procedure to construct element by element a superconvergent postprocessed displacement is proposed. Contrary to other hybridisable discontinuous Galerkin formulations, the methodology proposed here is able to produce a superconvergent displacement field for low-order approximations. The resulting method is robust and locking-free in the nearly incompressible limit. An extensive set of numerical examples is utilised to provide evidence of the optimality of the method and its superconvergent properties in two and three dimensions and for different element types
Abstract
The first superconvergent hybridisable discontinuous Galerkin method for linear elastic problems capable of using the same degree of approximation [...]
A face-centred finite volume (FCFV) method is proposed for linear elastostatic problems. The FCFV is a mixed hybrid formulation, featuring a system of first-order equations, that defines the unknowns on the faces (edges in two dimensions) of the mesh cells. The symmetry of the stress tensor is strongly enforced using the well-known Voigt notation and the displacement and stress fields inside each cell are obtained by means of explicit formulas. The resulting FCFV method is robust and locking-free in the nearly incompressible limit. Numerical experiments in two and three dimensions show optimal convergence of the displacement and the stress fields without any reconstruction. Moreover, the accuracy of the FCFV method is not sensitive to mesh distortion and stretching. Classical benchmark tests including Kirch’s plate and Cook’s membrane problems in two dimensions as well as three dimensional problems involving shear phenomenons, pressurised thin shells and complex geometries are presented to show the capability and potential of the proposed methodology.
Abstract
A face-centred finite volume (FCFV) method is proposed for linear elastostatic problems. The FCFV is a mixed hybrid formulation, featuring a system [...]
A second-order face-centred finite volume method (FCFV) is proposed. Contrary to the more popular cell-centred and vertex-centred finite volume (FV) techniques, the proposed method defines the solution on the faces of the mesh (edges in two dimensions). The method is based on a mixed formulation and therefore considers the solution and its gradient as independent unknowns. They are computed solving an element-by-element problem after the solution at the faces is determined. The proposed approach avoids the need of reconstructing the solution gradient, as required by cell-centred and vertex-centred FV methods. This strategy leads to a method that is insensitive to mesh distortion and stretching. The current method is second-order and requires the solution of a global system of equations of identical size and identical number of non-zero elements when compared to the recently proposed first-order FCFV. The formulation is presented for Poisson and Stokes problems. Numerical examples are used to illustrate the approximation properties of the method as well as to demonstrate its potential in three dimensional problems with complex geometries. The integration of a mesh adaptive procedure in the FCFV solution algorithm is also presented
Abstract
A second-order face-centred finite volume method (FCFV) is proposed. Contrary to the more popular cell-centred and vertex-centred finite volume (FV) [...]
A strategy to couple continuous Galerkin (CG) and hybridizable discontinuous Galerkin (HDG) discretizations based only on the HDG hybrid variable is presented for linear thermal and elastic problems. The hybrid CG-HDG coupling exploits the definition of the numerical flux and the trace of the solution on the mesh faces to impose the transmission conditions between the CG and HDG subdomains. The con- tinuity of the solution is imposed in the CG problem via Nitsche’s method, whereas the equilibrium of the flux at the interface is naturally enforced as a Neumann con- dition in the HDG global problem. The proposed strategy does not affect the core structure of CG and HDG discretizations. In fact, the resulting formulation leads to a minimally-intrusive coupling, suitable to be integrated in existing CG and HDG libraries. Numerical experiments in two and three dimensions show optimal global convergence of the stress and superconvergence of the displacement field, locking-free approximation, as well as the potential to treat structural problems of engineering interest featuring multiple materials with compressible and nearly incompressible behaviors. This is a post-peer-review, pre-copyedit version of an article published in Computational mechanics.
Abstract
A strategy to couple continuous Galerkin (CG) and hybridizable discontinuous Galerkin (HDG) discretizations based only on the HDG hybrid variable is [...]