Abstract
The SESAR (Single European Sky ATM Research) program is an ambitious re-search and development initiative to design the future European air traffic man-agement (ATM) system. The study of the behavior of ATM systems using agent-based modeling and simulation tools can help the development of new methods to improve their performance. This paper presents an overview of existing agent-based approaches in air transportation (paying special attention to the challenges that exist for the design of future ATM systems) and, subsequently, describes a new agent-based approach that we proposed in the CASSIOPEIA project, which was developed according to the goals of the SESAR program. In our approach, we use agent models for different ATM stakeholders, and, in contrast to previous work, our solution models new collaborative decision processes for flow traffic management, it uses an intermediate level of abstraction (useful for simulations at larger scales), and was designed to be a practical tool (open and reusable) for the development of different ATM studies. It was successfully applied in three stud-ies related to the design of future ATM systems in Europe. Document type: Part of book or chapter of bookAbstract
The SESAR (Single European Sky ATM Research) program is an ambitious re-search and development initiative to design the future European air traffic man-agement (ATM) system. The study of the behavior of ATM systems using agent-based modeling and simulation tools can help the development [...]Abstract
This paper describes an agent-based approach for the simulation of air traffic management (ATM) in Europe that was designed to help analyze proposals for future ATM systems. This approach is able to represent new collaborative deci-sion processes for flow traffic management, it uses an intermediate level of ab-straction (useful for simulations at larger scales), and was designed to be a practi-cal tool (open and reusable) for the development of different ATM studies. It was successfully applied in three studies related to the design of future ATM systems in Europe.Abstract
This paper describes an agent-based approach for the simulation of air traffic management (ATM) in Europe that was designed to help analyze proposals for future ATM systems. This approach is able to represent new collaborative deci-sion processes for flow traffic management, it uses [...]Abstract
PildoLabs is developing a UTM system to coordinate manned and unmanned aircraft operations for emergency operations. The system needs a mechanism to (1) validate and publish flight plans involved in the emergency operations and (2) provide a mechanism for third party systems to query published flight plans. SWIM is an aeronautical information exchange standard that is being developed in the frame of SESAR aimed at facilitating standardized information sharing. EUROCONTROL already provides some SWIM based services, including a flight plan management sets. The objecAbstract
PildoLabs is developing a UTM system to coordinate manned and unmanned aircraft operations for emergency operations. The system needs a mechanism to (1) validate and publish flight plans involved in the emergency operations and (2) provide a mechanism for third party systems to query [...]Abstract
Mención Internacional en el título de doctor The Air Traffic Management (ATM) system in the busiest airspaces in the world is currently being overhauled to deal with multiple capacity, socioeconomic, and environmental challenges. One major pillar of this process is the shift towards a concept of operations centered on aircraft trajectories (called Trajectory-Based Operations or TBO in Europe) instead of rigid airspace structures. However, its successful implementation (and, thus, the realization of the associated improvements in ATM performance) rests on appropriate understanding and management of uncertainty. Due to its complex socio-technical structure, the design and operations of the ATM system are heavily impacted by uncertainty, proceeding from multiple sources and propagating through the interconnections between its subsystems. One major source of ATM uncertainty is weather. Due to its nonlinear and chaotic nature, a number of meteorological phenomena of interest cannot be forecasted with complete accuracy at arbitrary lead times, which leads to uncertainty or disruption in individual air and ground operations that propagates to all ATM processes. Therefore, in order to achieve the goals of SESAR and similar programs, it is necessary to deal with meteorological uncertainty at multiple scales, from the trajectory prediction and planning processes to flow and traffic management operations. This thesis addresses the problem of single-aircraft flight planning considering two important sources of meteorological uncertainty: wind prediction error and convective activity. As the actual wind field deviates from its forecast, the actual trajectory will diverge in time from the planned trajectory, generating uncertainty in arrival times, sector entry and exit times, and fuel burn. Convective activity also impacts trajectory predictability, as it leads pilots to deviate from their planned route, creating challenging situations for controllers. In this work, we aim to develop algorithms and methods for aircraft trajectory optimization that are able to integrate information about the uncertainty in these meteorological phenomena into the flight planning process at both pre-tactical (before departure) and tactical horizons (while the aircraft is airborne), in order to generate more efficient and predictable trajectories. To that end, we frame flight planning as an optimal control problem, modeling the motion of the aircraft with a point-mass model and the BADA performance model. Optimal control methods represent a flexible and general approach that has a long history of success in the aerospace field. As a numerical scheme, we use direct methods, which can deal with nonlinear systems of moderate and high-dimensional state spaces in a computationally manageable way. Nevertheless, while this framework is well-developed in the context of deterministic problems, the techniques for the solution of practical optimal control problems under uncertainty are not as mature, and the methods proposed in the literature are not applicable to the flight planning problem as it is now understood. The first contribution of this thesis addresses this challenge by introducing a framework for the solution of general nonlinear optimal control problems under parametric uncertainty. It is based on an ensemble trajectory scheme, where the trajectories of the system under multiple scenarios are considered simultaneously within the same dynamical system and the uncertain optimal control problem is turned into a large conventional optimal control problem that can be then solved by standard, well-studied direct methods in optimal control. We then employ this approach to solve the robust flight plan optimization problem at the planning horizon. In order to model uncertainty in the wind and estimating the probability of convective conditions, we employ Ensemble Prediction System (EPS) forecasts, which are composed by multiple predictions instead of a single deterministic one. The resulting method can be used to optimize flight plans for maximum expected efficiency according to the cost structure of the airline; additionally, predictability and exposure to convection can be incorporated as additional objectives. The inherent tradeoffs between these objectives can be assessed with this methodology. The second part of this thesis presents a solution for the rerouting of aircraft in uncertain convective weather scenarios at the tactical horizon. The uncertain motion of convective weather cells is represented with a stochastic model that has been developed from the output of a deterministic satellite-based nowcast product, Rapidly Developing Thunderstorms (RDT). A numerical optimal control framework, based on the pointmass model with the addition of turn dynamics, is employed for optimizing efficiency and predictability of the proposed trajectories in the presence of uncertainty about the future evolution of the storm. Finally, the optimization process is initialized by a randomized heuristic procedure that generates multiple starting points. The combined framework is able to explore and as exploit the space of solution trajectories in order to provide the pilot or the air traffic controller with a set of different suggested avoidance trajectories, as well as information about their expected cost and risk. The proposed methods are tested on example scenarios based on real data, showing how different user priorities lead to different flight plans and what tradeoffs are then present. These examples demonstrate that the solutions described in this thesis are adequate for the problems that have been formulated. In this way, the flight planning process can be enhanced to increase the efficiency and predictability of individual aircraft trajectories, which would lead to higher predictability levels of the ATM system and thus improvements in multiple performance indicators. El sistema de gestión del tráfico aéreo (Air Traffic Management, ATM) en los espacios aéreos más congestionados del mundo está siendo reformado para lidiar con múltiples desafíos socioeconómicos, medioambientales y de capacidad. Un pilar de este proceso es el gradual reemplazo de las estructuras rígidas de navegación, basadas en aerovías y waypoints, hacia las operaciones basadas en trayectorias. No obstante, la implementación exitosa de este concepto y la realización de las ganancias esperadas en rendimiento ATM requiere entender y gestionar apropiadamente la incertidumbre. Debido a su compleja estructura socio-técnica, el diseño y operaciones del sistema ATM se encuentran marcadamente influidos por la incertidumbre, que procede de múltiples fuentes y se propaga por las interacciones entre subsistemas y operadores humanos. Uno de los principales focos de incertidumbre en ATM es la meteorología. Debido a su naturaleza no-linear y caótica, muchos fenómenos de interés no pueden ser pronosticados con completa precisión en cualquier horizonte temporal, lo que crea disrupción en las operaciones en aire y tierra que se propaga a otros procesos de ATM. Por lo tanto, para lograr los objetivos de SESAR e iniciativas análogas, es imprescindible tener en cuenta la incertidumbre en múltiples escalas espaciotemporales, desde la predicción de trayectorias hasta la planificación de flujos y tráfico. Esta tesis aborda el problema de la planificación de vuelo de aeronaves individuales considerando dos fuentes importantes de incertidumbre meteorológica: el error en la predicción del viento y la actividad convectiva. Conforme la realización del viento se desvía de su previsión, la trayectoria real se desviará temporalmente de la planificada, lo que implica incertidumbre en tiempos de llegada a sectores y aeropuertos y en consumo de combustible. La actividad convectiva también tiene un impacto en la predictibilidad de las trayectorias, puesto que obliga a los pilotos a desviarse de sus planes de vuelo para evitarla, cambiado así la situación de tráfico. En este trabajo, buscamos desarrollar métodos y algoritmos para la optimización de trayectorias que puedan integrar información sobre la incertidumbre en estos fenómenos meteorológicos en el proceso de diseño de planes de vuelo en horizontes de planificación (antes del despegue) y tácticos (durante el vuelo), con el objetivo de generar trayectorias más eficientes y predecibles. Con este fin, formulamos la planificación de vuelo como un problema de control óptimo, modelando la dinámica del avión con un modelo de masa puntual y el modelo de rendimiento BADA. El control óptimo es un marco flexible y general con un largo historial de éxito en el campo de la ingeniería aeroespacial. Como método numérico, empleamos métodos directos, que son capaces de manejar sistemas dinámicos de alta dimensión con costes computacionales moderados. No obstante, si bien esta metodología es madura en contextos deterministas, la solución de problemas prácticas de control óptimo bajo incertidumbre en la literatura no está tan desarrollada, y los métodos propuestos en la literatura no son aplicables al problema de interés. La primera contribución de esta tesis hace frente a este reto mediante la introducción de un marco numérico para la resolución de problemas generales de control óptimo no-lineal bajo incertidumbre paramétrica. El núcleo de este método es un esquema de conjunto de trayectorias, en el que las trayectorias del sistema dinámico bajo múltiples escenarios son consideradas de forma simultánea, y el problema de control óptimo bajo incertidumbre es así transformado en un problema convencional que puede ser tratado mediante métodos existentes en control óptimo. A continuación, empleamos este método para resolver el problema de la planificación de vuelo robusta. La incertidumbre en el viento y la probabilidad de ocurrencia de condiciones convectivas son modeladas mediante el uso de previsiones de conjunto o ensemble, compuestas por múltiples predicciones en lugar de una única previsión determinista. Este método puede ser empleado para maximizar la eficiencia esperada de los planes de vuelo de acuerdo a la estructura de costes de la aerolínea; además, la predictibilidad de la trayectoria y la exposición a la convección pueden ser incorporadas como objetivos adicionales. El trade-off entre estos objetivos puede ser evaluado mediante la metodología propuesta. La segunda parte de la tesis presenta una solución para reconducir aviones en escenarios tormentosos en un horizonte táctico. La evolución de las células convectivas es representada con un modelo estocástico basado en las proyecciones de Rapidly Developing Thunderstorms (RDT), un sistema determinista basado en imágenes de satélite. Este modelo es empleado por un método de control óptimo numérico, basado en un modelo de masa puntual en el que se modela la dinámica de viraje, con el objetivo de maximizar la eficiencia y predictibilidad de la trayectoria en presencia de incertidumbre sobre la evolución futura de las tormentas. Finalmente, el proceso de optimizatión es inicializado por un método heurístico aleatorizado que genera múltiples puntos de inicio para las iteraciones del optimizador. Esta combinación permite explorar y explotar el espacio de trayectorias solución para proporcionar al piloto o al controlador un conjunto de trayectorias propuestas, así como información útil sobre su coste y el riesgo asociado. Los métodos propuestos son probados en escenarios de ejemplo basados en datos reales, ilustrando las diferentes opciones disponibles de acuerdo a las prioridades del planificador y demostrando que las soluciones descritas en esta tesis son adecuadas para los problemas que se han formulado. De este modo, es posible enriquecer el proceso de planificación de vuelo para incrementar la eficiencia y predictibilidad de las trayectorias individuales, lo que contribuiría a mejoras en el rendimiento del sistema ATM. These works have been financially supported by Universidad Carlos III de Madrid through a PIF scholarship; by Eurocontrol, through the HALA! Research Network grant 10-220210-C2; by the Spanish Ministry of Economy and Competitiveness (MINECO)'s R&D program, through the OptMet project (TRA2014-58413-C2-2-R); and by the European Commission's SESAR Horizon 2020 program, through the TBO-Met project (grant number 699294). Programa de Doctorado en Mecánica de Fluidos por la Universidad Carlos III de Madrid; la Universidad de Jaén; la Universidad de Zaragoza; la Universidad Nacional de Educación a Distancia; la Universidad Politécnica de Madrid y la Universidad Rovira i Presidente: Damián Rivas Rivas.- Secretario: Xavier Prats Menéndez.- Vocal: Benavar Sridhar Document type: ArticleAbstract
Mención Internacional en el título de doctor The Air Traffic Management (ATM) system in the busiest airspaces in the world is currently being overhauled to deal with multiple capacity, socioeconomic, and environmental challenges. One major pillar of this process is the shift towards [...]Abstract
Future 4D TBO will require effective air- ground data link communication and negotiation protocols. This issue is especially critical in Arrival and Approach flight phase due to the variability of conditions into a short space-time environment where multiple aircraft simultaneously converge. Besides, several subtasks are closely related with effective air-ground negotiation protocols for 4D TBO in Terminal Areas: predicting accurate arrivals 4D trajectories, performing well established 4D trajectory formats for an effective interoperability between airborne and ground systems, designing efficient real-time aircraft arrival sequencer and scheduler algorithms, etc. In this paper we propose a 4D Trajectory Air- Ground Negotiation Protocol for Arrival and Approach Sequencing. The Negotiation Protocol has been implemented in an ad hoc multi-agent platform. Based on this proposal we summarize other relevant information that should be incorporated into the 4D trajectory information. Document type: Conference objectAbstract
Future 4D TBO will require effective air- ground data link communication and negotiation protocols. This issue is especially critical in Arrival and Approach flight phase due to the variability of conditions into a short space-time environment where multiple aircraft simultaneously [...]Abstract
In this paper we study the en-route strategic flight planning of a commercial aircraft constrained to pass through a set of waypoints whose sequence is not predefined. This problem has been solved as an hybrid optimal control problem in which, given the dynamic model of the aircraft, the initial and final states, the path constraints constituting the envelope of flight, and a set of waypoints in the European air space, one has to find the control inputs, the switching times, the optimal sequence of waypoints and the corresponding trajectory of the aircraft that minimize the direct operating cost during the flight. The complete layout of waypoints in the European airspace is reduced and waypoints are gathered into a small number of clusters. The aircraft is constrained to pass through one waypoint inside every cluster of waypoints. The presence of multi point constraints makes the optimal control problem particularly difficult to solve. The hybrid optimal control problem is converted into a mixed integer non linear programming problem first making the unknown switching times part of the state, then introducing binary variable to enforce the constraint of passing through one waypoint inside every cluster, and finally applying a direct collocation method. The resulting mixed integer non linear programming problem has been solved using a branch and bound algorithm. The cases studied and the numerical results show the effectiveness, efficiency and applicability of this method for enroute strategic flight plans definition.Abstract
In this paper we study the en-route strategic flight planning of a commercial aircraft constrained to pass through a set of waypoints whose sequence is not predefined. This problem has been solved as an hybrid optimal control problem in which, given the dynamic model of the aircraft, [...]Abstract
viation industries are looking into several resources for renewable and sustainable energy. Among those attention is focused in biojet fuel. This paper engages the issue of biojet fuel emissions that increase the environmental concern in the air transport sector. The paper presents the use of biojet fuel and its effect on aircraft engine maintenance through preliminary data collections, and a review of its development process in operations for time and goal. As conclusion, airlines management needs to adapt and adopt the transition to alternative fuels, especially given the global biofuel trend emerging due to the authority approval. Document type: ArticleAbstract
viation industries are looking into several resources for renewable and sustainable energy. Among those attention is focused in biojet fuel. This paper engages the issue of biojet fuel emissions that increase the environmental concern in the air transport sector. The paper presents [...]Abstract
Introduction: With the constant increase in air travel every year and the downfalls of the World’s economy, airline managers face the need to optimize resources with the goal of reaching profit and reliability targets. This leads to higher utilization rates in commercial aircrews, with more hours of work and the consequence of less sleep and off time. As such, pilots and cabin crew face an increasing number of sleep disturbances, with the consequent alertness impairments and reduced performance. The concept of fatigue resumes these issues and has recently been addressed by several studies and documents, which prove its hazards and identifies them as risks to a flight’s safety. The main goal of this study is the methodic identification of fatigue in a regional aircraft operator that, although not suffering from night circadian disruption has a major rostering structure of multi-flight operations with flights in the early hours of the day. Methodology: The universe and the sample size of this study are equal and correspond to 52 airline pilots, 27 Captains and 25 First Officers, all males and an average age of 39.2 years old. The methodology used in this research consists of two interconnected principles: objective fatigue measurement, using bio-mathematical modeling through the SAFE model and subjective fatigue measurement through a 3 week daily survey applied to real operations, allowing the measurement of individual fatigue in the beginning of work and at top of descend on the last flight of the day. The survey was complemented by an adapted version of NASA’s TLX workload measurement scale, allowing a more complete analysis of an additional fatigue cause that has impact in multi-segment operations. A questionnaire was also distributed in order to identify any variability factors that could influence the measurements and limit pilot’s capabilities and performance.Results: Results were determined by setting a methodic approach to schedule analysis, with 365 days of planned pilot rosters processed. Areas of high risk were identified, in particular on the early hours of the morning and the evening and on days with more than 4 sectors. With the surveys and when comparing both measurements, SAFE model predictions stay short of 5 in the Samn-Perelli Scale (Moderately tired. Let down.) whilst pilot reported fatigue values represent a 6 on the same scale (Extremely tired. Very difficult to concentrate.). A high relation was also found between the increase of fatigue, the number of sectors and time of day, revealing that workload might be caused by multi-segment operations and a hazard to what can be considered an acceptable level of safety to risk management in flight operations. Conclusion: A new approach to workload in the fatigue and safety settings should be considered, and further research should strive to look at the impact of workload in multi-segment operations. This should all lead to new hazard identification and risk mitigation practices to be in place, joining flight safety and rostering departments in better and more robust schedules, with of course increased safety levels and better overhaul performance. Orientação : Anabela SimõeAbstract
Introduction: With the constant increase in air travel every year and the downfalls of the World’s economy, airline managers face the need to optimize resources with the goal of reaching profit and reliability targets. This leads to higher utilization rates in commercial aircrews, [...]Abstract
[SPA] El aumento del tráfico aéreo ha sido exponencial en las últimas décadas; pasando a ser la aviación comercial una pieza clave en el turismo, el transporte urgente de mercancías, los negocios, etc. Tal y como confirman las estadísticas a nivel mundial, la aviación comercial seguirá en aumento hasta límites que exijan una gestión adecuada al número de vuelos. Esta gestión será clave para mantener la seguridad operacional en niveles óptimos. Este hecho supone que las operaciones aéreas y su gestión deberán evolucionar hacia una implementación de la tecnología que permita su control y gestión conforme a los estándares de seguridad operacional, de tal forma que confirmen la aviación como uno de los medios de transporte más seguros. El uso de una tecnología obsoleta en la gestión de tráfico aéreo podría poner en riesgo la seguridad de las operaciones aéreas y, consecuentemente, su utilización como medio de transporte. La evolución de la tecnología ha sido un factor clave en la universalidad y avance de la aviación, tanto civil como militar. En poco más de 100 años se ha pasado de navegar con una brújula a disponer en la cabina de las aeronaves de sistemas de navegación que permiten el aterrizaje con visibilidad cero. Esta evolución se ha acentuado notablemente en los últimos años con la introducción del GPS y con la revisión de procedimientos de navegación. La introducción de la navegación por satélite añadido a una evolución notable de las características de vuelo de las aeronaves ha supuesto que la navegación pase a estar enfocada en la radio ayuda (VOR, NDB, etc) a estarlo en las propias características o performances de la aeronave. Este hecho se conoce como navegación basada en las características o prestaciones; PBN por sus siglas en inglés (Performance Based Navigation). La introducción de la navegación por satélite también ha supuesto que se implementen aproximaciones más precisas y fiables como lo son: aproximaciones GBAS (Ground based Augmerntation System), aproximación GLS (GBAS Instrumental Landing System), control ATS mediante mensajes trasmitidos por Data Link, etc. Además de las aproximaciones finales, también se han introducido procedimientos de navegación y conceptos de operación más precisos en cuanto a la navegación en zonas terminales y en ruta. El aumento de la precisión y el cambio del concepto de la operación ha supuesto una auténtica revolución a nivel mundial. Esto ha dado lugar a que se implementen espacios aéreos en los que se establecen diversos requisitos de navegación o performance, como es el caso de la navegación de área (RNAV) o la “Required Navigation Performance” (RNP). Diversos espacios aéreos regionales han sido protagonistas en la implementación de los nuevos conceptos de operación o CONOPS, como los son el SESAR y el NextGen. De hecho, en el espacio aéreo NextGen numerosas radio ayudas tradicionales (mayormente VOR) dejarán de emitir señal en 2021. Por este motivo, esta tesis dedica un capítulo entero a revisar el estado del arte de la navegación basada en las características (PBN) y sus derivadas como lo son el GBAS, el D-Link, etc. A pesar de este avance en la tecnología aplicada a la navegación, existen áreas de la seguridad operacional en la que dicha evolución no se ha implantado de una forma lógica. Esta falta de implementación supone que exista riesgo de incidentes y/o accidentes en fases del vuelo tan claves como el despegue o el aterrizaje. Teniendo en cuenta esta premisa, esta investigación está enfocada en las deficiencias de implantación de la tecnología en la fase de aproximación, tomando como ejemplo dos situaciones operacionales concretas: el impacto de pájaro en aproximación final y la aproximación frustrada. Existe numerosa literatura que demuestra que la seguridad aérea, para mitigar el riesgo ante estas ocurrencias, está basada en procedimientos de la era de la navegación basada en la radionavegación (VOR, TACAN) y no en la navegación por satélite. Esto ha dado lugar a que existan fallas o condiciones latentes en el área de la seguridad operacional, las cuales deben ser analizadas mediante los modelos de seguridad operacional. Con el objeto de disminuir los accidentes aéreos, los responsables de la seguridad operacional (ICAO, FSO, etc.) comenzaron a enfocar la seguridad aérea hacia un sistema transversal y de perspectiva, que abarca factores organizativos, técnicos y humanos. Como consecuencia de este tipo de enfoque se desarrollaron teorías de predicción e investigación de accidentes. Algunas de las teorías más relevantes e influyentes fueron: el “Operational Risk Management (ORM)”, el modelo del doctor J. Reason (el “Swiss cheese model”) y el modelo de las 5 MS (man, media, machine, misión y management por sus siglas en inglés). Estas nuevas doctrinas de la seguridad operacional, especialmente las 5 Ms, son la base de esta investigación, siendo el pilar de los capítulos de la tesis en los que se proponen nuevas herramientas y procedimientos para la gestión del riesgo. En este estudio, estos modelos de gestión de la seguridad operacional están enfocados en las fases de vuelo en las que es más posible que se produzca un accidente aéreo: la aproximación final. Desde el comienzo de la aviación, ha habido accidentes relacionados con las aves, especialmente en las fases más críticas del vuelo; el despegue y el aterrizaje. Dado que la proliferación de aves es difícil de controlar en zonas aeroportuarias, existe un paradigma de que el impacto de ave es simplemente una tendencia imparable. Ese paradigma es aún más retroalimentado cuando se consideran políticas ambientales que protegen a las aves, incluso si éstas son un peligro para la seguridad operacional. A pesar de esto, con la aparición e integración de los sistemas de radar aviar, la estimación de las futuras trayectorias de las aves es posible. En otras palabras, se puede conocer la posición de un ave en cualquier momento y predecir su futura posición. Por lo tanto, tal y como se describe en esta investigación, mitigar su incidencia en los accidentes aéreos también es posible. Esto es así ya que la probabilidad y la severidad de un impacto con ave se pueden evaluar e identificar varios minutos antes de que ocurra. Esto supone un claro avance en el campo de la mitigación del riesgo de las operaciones aéreas, que tendrá una gran relevancia en el futuro. La evaluación del peligro de impacto de ave (WHA, por sus siglas en inglés) es un elemento clave en esta investigación. Con la aparición y la integración de los sistemas de radar aviar, el riesgo impacto de ave se puede conocer varios minutos antes de que ocurra. Teniendo esto en cuenta, algunos procedimientos o protocolos de mitigación se han propuesto en esta tesis para mitigar el riesgo de accidente por impacto de ave. La mitigación consiste en el desarrollo de una metodología y su simulación en un entorno realista para la gestión en tiempo real de la evaluación de riesgos. Esta evaluación está basada en datos del radar aviar y los parámetros de vuelo de una aeronave en aproximación final. Así, la citada evaluación de riesgo puede desenlazar acciones o procedimientos, que si son realizados con tiempo suficiente pueden reducir significativamente el riesgo de un impacto de ave en la aproximación final. Considerando lo anterior, se ha desarrollado un modelo de estimación de riesgo que combina las trayectorias del ave y de la aeronave (basado en velocidad, altitud y rumbo), con objeto de determinar futuras aproximaciones o cruces de trayectoria, así como la velocidad, la energía cinética y el ángulo de un posible impacto. Para comprobar si el sistema de mitigación de riesgos es viable, se han estudiado escenarios de simulación para confirmar si las acciones de mitigación podrían implementarse considerando el tiempo de reacción, las características de las aeronaves y la cobertura del radar aviar. El método de evaluación de riesgos propuesto y las medidas de mitigación para reducir la probabilidad de un impacto de ave en las aeronaves son un enfoque sistemático y científico para mejorar la seguridad operacional en los aeropuertos. La presente propuesta presenta la novedad de que la mitigación de riesgos en zonas aeroportuarias se realiza aplicando tecnología existente pero no implementada hasta la fecha, pese a los estudios realizados en algunos aeropuertos. Esta propuesta podría ser clave para un incremento de la seguridad operacional y un ejemplo para futuras investigaciones en el campo de la mitigación del riesgo en la aproximación final. Por ejemplo, si durante la aproximación final un riesgo elevado de impacto con ave se detecta con la suficiente antelación, la aeronave podría realizar una aproximación frustrada para mitigar y/o evitar el riesgo. Por otro lado, los procedimientos actuales de aproximación frustrada consisten en vuelos extensos basados mayormente en radio-ayudas VOR y TACAN. En otras palabras, no están actualizados conforme a la tecnología actual. En la tesis se propone un nuevo procedimiento de aproximación frustrada basado en procedimientos de navegación según procedimientos PBN y la tecnología actual, que puede ser un hito y un ejemplo para el futuro procedimiento de aproximación frustrada. A pesar de la nueva tecnología, los procedimientos de aproximación frustrada no se han rediseñado correctamente ni se han implementado para reinyectar el tráfico en la aproximación final o en los segmentos intermedios. En el caso del aeropuerto de Málaga, una aeronave en aproximación frustrada podría volar más de 40 minutos para intentar de nuevo el aterrizaje. Esa situación es similar en aeropuertos internacionales de primera fila, como Barajas, Atlanta, y Múnich, etc. Por lo tanto, existe una deficiencia en la aproximación frustrada que afectan a áreas de elevado tráfico aéreo: áreas terminales, fases finales de aproximación, etc. En la mayoría de los casos, cuando una aeronave realiza una aproximación frustrada, emplea cerca de 30 minutos para volver a inyectarse en el tráfico estándar. Este hecho supone un problema de seguridad para la tripulación aérea, los controladores aéreos y otras aeronaves. En consecuencia, este hecho representa un riesgo para la gestión del tráfico y la seguridad operacional. Para mitigar lo anteriormente descrito, se ha sido desarrollado un nuevo procedimiento de aproximación frustrada; con el objeto de mitigar el riesgo que supone esta deficiencia, la cual podría derivar en una condición latente. Así pues, en esta tesis se propone un procedimiento para evitar problemas de seguridad y acelerar el tráfico en aproximación frustrada. Este procedimiento está basado en un estudio sistemático, en el que se ha creado un ambiente de simulación de aeronaves con parametrización real, utilizando técnicas de simulación que dotan al escenario de una ambientación real. La metodología se basa en una combinación de simulación, parametrización y uso de la tecnología de navegación actualmente disponible y que utilizan varias flotas en todo el mundo: el GBAS, ADS-B y el enlace de datos controlador-piloto (CPDL). En la simulación se introduce una calculadora automática de aproximación frustrada y un sistema de guía (ARS) para ayudar a la tripulación aérea y a los controladores aéreos a reinsertar la aeronave en la aproximación final cuando hay una aproximación frustrada en curso. Para validar el sistema, se ha creado un escenario con requisitos y procedimientos internacionales de la OACI. La carta de aproximación GBAS de Málaga se ha propuesto como el escenario de estudio, ya que abarca varios criterios importantes: la propia aproximación está basada en el GBAS, tiene una alta densidad de tráfico durante en verano y periodo vacacional, la aproximación frustrada no está diseñada teniendo en cuenta el GBAS y la geografía es en sí un desafío para desviar el tráfico en la aproximación frustrada. En resumen, esta investigación se basa en la aplicación de la doctrina de la seguridad operacional y la tecnología actual en la mitigación del riesgo en dos escenarios concretos: el impacto de pájaro ave en la aproximación final y la aproximación frustrada. Esta implementación supone un aumento significativo de la seguridad operacional en una fase tan crítica como la aproximación final. Además, es un ejemplo para futuras propuestas de mitigación de riesgos e investigaciones en situaciones análogas como lo puedan ser la congestión de tráfico, los abortos de ascenso, etc. [ENG] The increase in air traffic has been exponential in recent decades; turning to be the commercial aviation a key piece in the tourism, the urgent transport of merchandize, the businesses, etc. As confirmed by global statistics of the evolution of air traffic in recent years, commercial aviation will continue to increase to limits that require adequate management to maintain operational safety at optimum levels. This fact assumes that air operations and their management must evolve towards an implementation of the technology that allows their control and management in accordance with safety standards, in such a way that they will confirm aviation as one of the safest means of transport. The anchoring in the technology of previous decades could jeopardize the safety of air operations and, consequently, their use as a means of transport. The evolution of technology has been a key factor in the universality and advancement of aviation, both civil and military. In a little more than 100 years it has gone from navigating with a compass to having in the cabin of the aircraft navigation systems that allow the landing with zero visibility. This evolution has been significantly accentuated in recent years with the introduction of GPS and the revision of navigation procedures. This revision has led to the implementation of more accurate and reliable approaches such as GBAS, GLS, and ATS control through messages transmitted by Data Link. Despite the advancement of technology, there are areas of operational safety in which this evolution has not been implemented in a logical manner. This lack of implementation means that there is a risk of incidents and / or accidents in key phases of the flight, such as takeoff or landing. This research is focused on the deficiencies in the implementation of technology in the approach phase; taking as an explanatory example the bird strike and the missed approach. There is a large literature that shows that both situations are based on procedures of the era of navigation based on radio navigation (VOR, TACAN) and not on satellite navigation. This has resulted in faults or latent conditions in the area of safety. In order to reduce accidents, those responsible for safety (ICAO, FSO, etc.) began to focus on aviation safety towards a transversal and perspective system, which includes organizational, technical and human factors. Because of this type of approach, theories of prediction and investigation of accidents were developed. Some of the most relevant and influential theories were the Operational Risk Management (ORM), the J. Reason model, the “SHELL” model and the 5M system. These new doctrines of operational safety, especially the 5M, is the basis of this research, being the pillar of the chapters in which new tools and procedures for risk management are proposed. Since the beginning of aviation, there have been accidents related to birds, especially in the most critical phases of the flight; at takeoff and landing. Given that the proliferation of birds is difficult to control in airport zones, there is a paradigm that assumes that the bird impact is simply an unstoppable trend. This paradigm is even more reinforced when considering environmental policies that protect birds, even if they are a safety hazard for aviation. Despite this, with the emergence and integration of avian radar systems, the estimation of future trajectories of birds is possible. Therefore, as described in this investigation, mitigating its incidence in air accidents is also possible. This is so since the probability and severity of a bird impact can be assessed and identified several minutes before it occurs. This is a clear advance in the field of risk mitigation of air operations. The bird impact hazard assessment (WHA) is a key element of this investigation. With the emergence and integration of avian radar systems, the probability and severity of a bird impact can be assessed several minutes before it occurs. Thus, some mitigation procedures or protocols have been proposed in this thesis to mitigate the risk of accident. The mitigation consists of the development of a methodology in a realistic environment for the real-time management of the risk assessment based on avian radar data and the flight parameters of an aircraft on final approach. This risk assessment may involve actions or procedures, which will be carried out with enough time to significantly reduce the risk of a bird impact on the final approach. Considering the above, a risk estimation model has been developed that combines the trajectories of the bird and the aircraft (based on speed, altitude and heading), in order to determine future approaches or trajectory crossings, as well as the speed, the kinetic energy and the angle of a possible impact. In order to verify if the risk mitigation system is feasible, simulation scenarios have been studied to confirm if the mitigation actions could be implemented considering the reaction time, the characteristics of the aircraft and the coverage of the avian radar. The proposed risk assessment method and mitigation measures to reduce the likelihood of a bird impact on aircraft are a systematic and scientific approach to improve airport safety. This proposal presents the novelty that the mitigation of risks in airport zones is carried out applying existing technology but not implemented to date despite the studies carried out in some airports. This proposal could be key for an increase in safety and an example for future research in the field of mitigation of risk in the final approach. On the other hand, current missed approach procedures consist of long flights that are mainly based on the VOR and TACAN aids; in other words, they are not updated to the current technology. The thesis proposes a new procedure of missed approach based on navigation procedures according to PBN procedures and current technology that can be a milestone and an example for the future missed approach procedure. Despite the new technology, the missed approach procedures have not been properly designed or implemented to divert traffic to the final approach or intermediate segments. In the case of the Malaga airport, an aircraft on a missed approach could fly more than 40 minutes to land again. This situation is similar in relevant international airports, such as Barajas, Atlanta, and Munich. Therefore, there is a deficiency when considering the missed approach in highly dense traffic areas: terminal areas, final stages of approach, etc. In most cases, when an aircraft executes a missed approach, it takes about 30 minutes to rejoin standard traffic, which poses a safety problem for the aircrew, air traffic controllers and other aircraft. Consequently, this represents a risk for traffic management and safety. Considering the above described, a new procedure of missed approach has been developed to mitigate the risk posed by this deficiency, which could lead to a latent safety condition. In this thesis a procedure is proposed to avoid safety problems and accelerate traffic in missed approach. This procedure is based on a systematic study, in which a simulation environment has been created with aircraft with real parameterization, using simulation techniques that give the scenario a real atmosphere. The methodology is based on a combination of simulation, parameterization and use of currently available navigation technology, which are used by several fleets around the world: GBAS, ADS-B, and CPDL. An automatic missed approach calculator and a guidance system (ARS) is introduced to assist the aircrew and air traffic controllers in reinserting the aircraft into the final approach when a missed approach is in progress. To validate the system, a scenario with international ICAO requirements and procedures has been created. The GBAS Malaga approach chart has been proposed as the study scenario, since it covers several important criteria: the approach itself is based on GBAS, the airport has a high traffic density during summer and holiday period, the missed approach is not designed with GBAS in mind, and geography is itself a challenge to divert traffic on the missed approach. This research is based on the application of the doctrine of operational safety and current technology in risk mitigation in two specific scenarios: the impact of bird on the final approach and the missed approach. This implementation supposes a significant increase of the operational safety in a phase as critical as the final approach. In addition, it is an example for future proposals for risk mitigation and investigations in analogous situations such as traffic congestion, promotion abortions, etc. Escuela Internacional de Doctorado de la Universidad Politécnica de Cartagena Universidad Politécnica de Cartagena Programa de Doctorado en Tecnologías Industriales por la Universidad Politécnica de CartagenAbstract
[SPA] El aumento del tráfico aéreo ha sido exponencial en las últimas décadas; pasando a ser la aviación comercial una pieza clave en el turismo, el transporte urgente de mercancías, los negocios, etc. Tal y como confirman las estadísticas a nivel mundial, la aviación comercial [...]Abstract
La fabricación avanzada en materiales compuestos termoplásticos es clave para satisfacer los requerimientos del sector aeronáutico. Las ventajas diferenciadoras de los polímeros termoplásticos de alto rendimiento frente a las resinas termoestables, hace que estos materiales sean cada vez más demandados en el sector. Es clave su capacidad de reprocesado que permite 1) la automatización de los procesos, 2) la utilización de la tecnología de unión por soldadura entre sus componentes y 3) aplicar criterios de reciclabilidad y reutilización, imposibles para los materiales termoestables. Su mayor tenacidad y su cumplimiento de los estándares más estrictos de llama, humo y toxicidad aportan un plus importante a sus prestaciones. Polieterimida (PEI), Sulfuro de Polifenileno (PPS), Polieteretercetona (PEEK), Polietercetonacetona (PEKK) y el novedoso poliariletercetona (PAEK) son las matrices empleadas en esta tecnología de materiales compuestos termoplásticos de altas prestaciones. En función de la tipología del componente final, se selecciona la tecnología de procesado más adecuada, dependiendo de aspectos como geometría de pieza, tamaño y número de piezas a fabricar. El objetivo del presente trabajo fue la exploración de tecnologías de procesado de composites termoplásticos, tales como: Termoconformado de láminas compuestas (organosheet), obtención de laminados customizados (tailored sheet consolidation) y moldeo de escamas y/o pellets reforzados mediante compresión (T-BMC, Thermoplastic Bulk Moulding Compound) a través del desarrollo y puesta a punto de la fabricación de prototipos. Los resultados demostraron que estas tecnologías cumplen los requerimientos exigidos por el sector aeronáutico tanto en procesabilidad como en propiedades.
Abstract
La fabricación avanzada en materiales compuestos termoplásticos es clave para satisfacer los requerimientos del sector aeronáutico. Las ventajas diferenciadoras de los polímeros termoplásticos de alto rendimiento frente a las resinas termoestables, [...]