Abstract

In recent years, serious accidents due to sand and water gushing around shield tunnel happen from time to time. Sand and water gushing could lead to large soil displacement, change soil stress field around tunnels, and then threaten the safety of tunnel structures. To date, there is a lack of theoretical research on the evolution of sand and water gushing, and the numerical simulation of the process is challenging because soil-water interaction, soil-structure interaction and large deformations have to be accounted for. In this paper, the Material Point Method (MPM) is used to deal with large deformation and various simulation cases considering different gushing locations at tunnels are carried out to investigate the development of soil displacement and stress around tunnels due to water and soil gushing. The results show that position of the gushing point greatly affect the damage scope. The sand gushing rate, the soil displacement and stress field, the ground settlement trough, and the earth pressure on the tunnel linings develop completely differently due to the varying position of the gushing point, which are analyzed to suggest reasonable guidance and countermeasures for preventing future sand and water gushing accidents.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 11/07/21
Submitted on 11/07/21

Volume IS23 - Numerical Methods in Geomechanics, 2021
DOI: 10.23967/coupled.2021.049
Licence: CC BY-NC-SA license

Document Score

0

Views 22
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?