Abstract

Fiber reinforced polymers (FRPs) are increasingly used in thick primary load-bearing structures, while manufacturing and in-service defects occur with a higher chance as the composite thickness increases, which entails the nondestructive detection and evaluation of potential structure defects. This study focuses on the imaging qualities of defects at different depth in thick FRPs via total focusing method (TFM), aiming at determining the optimum imaging strategy for thick FRPs (25 mm for discussion). Dynamic homogenization based on Floquet theory and numerical finite element analysis are performed to interrogate the wave propagation characteristics. The Frequency-dependent time correction method for TFM imaging (F-TFM) is proposed for accurate defect imaging in periodically layered crossply FRP. Finally, the results show that the proposed F-TFM method is able to detect and locate the defects of 2 mm size at all possible depth.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 11/03/21
Submitted on 11/03/21

Volume 2100 - Other, 2021
DOI: 10.23967/wccm-eccomas.2020.347
Licence: CC BY-NC-SA license

Document Score

0

Views 53
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?