Local stress fields are routinely computed from molecular dynamics trajectories to understand the structure and mechanical properties of lipid bilayers. These calculations can be systematically understood with the Irving-Kirkwood-Noll theory. In identifying the stress tensor, a crucial step is the decomposition of the forces on the particles into pairwise contributions. However, such a decomposition is not unique in general, leading to an ambiguity in the definition of the stress tensor, particularly for multibody potentials. Furthermore, a theoretical treatment of constraints in local stress calculations has been lacking. Here, we present a new implementation of local stress calculations that systematically treats constraints and considers a privileged decomposition, the central force decomposition, that leads to a symmetric stress tensor by construction. We focus on biomembranes, although the methodology presented here is widely applicable. Our results show that some unphysical behavior obtained with previous implementations (e.g. nonconstant normal stress profiles along an isotropic bilayer in equilibrium) is a consequence of an improper treatment of constraints. Furthermore, other valid force decompositions produce significantly different stress profiles, particularly in the presence of dihedral potentials. Our methodology reveals the striking effect of unsaturations on the bilayer mechanics, missed by previous stress calculation implementations.

L. Zhu, Q. Cui, Y. Liu, Y. Yan, H. Xiao, X. Chen. Molecular Dynamics-Decorated Finite Element Method (MDeFEM): Application to the Gating Mechanism of Mechanosensitive Channels. (2018) DOI 10.1007/978-3-319-22977-5_46-1

J. Vanegas, M. Arroyo. Force Transduction and Lipid Binding in MscL: A Continuum-Molecular Approach. PLoS ONE 9(12) (2014) DOI 10.1371/journal.pone.0113947

K. Nakagawa, H. Noguchi. Nonuniqueness of local stress of three-body potentials in molecular simulations. Phys. Rev. E 94(5) (2016) DOI 10.1103/physreve.94.053304

G. Shahane, W. Ding, M. Palaiokostas, M. Orsi. Physical properties of model biological lipid bilayers: insights from all-atom molecular dynamics simulations. J Mol Model 25(3) (2019) DOI 10.1007/s00894-019-3964-0

R. Aguayo-Ortiz, J. Straub, L. Dominguez. Influence of membrane lipid composition on the structure and activity of γ-secretase. Phys. Chem. Chem. Phys. 20(43) (2018) DOI 10.1039/c8cp04138e

S. Winczewski, J. Dziedzic, J. Rybicki. Central-force decomposition of spline-based modified embedded atom method potential. Modelling Simul. Mater. Sci. Eng. 24(7) (2016) DOI 10.1088/0965-0393/24/7/075003

L. Zhu, Q. Cui, Y. Liu, Y. Yan, H. Xiao, X. Chen. Molecular Dynamics-Decorated Finite Element Method (MDeFEM): Application to the Gating Mechanism of Mechanosensitive Channels. (2019) DOI 10.1007/978-3-319-58729-5_46

W. Chen, S. Chen, T. Liang, Q. Zhang, Z. Fan, H. Yin, K. Huang, X. Zhang, Z. Lai, P. Sheng. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nature Nanotech 13(4) (2018) DOI 10.1038/s41565-018-0067-5

D. Lips, P. Maass. Stress-stress fluctuation formula for elastic constants in the
NPT
ensemble. Phys. Rev. E 97(5) (2018) DOI 10.1103/physreve.97.053002

A. Torres-Sánchez, J. Vanegas, M. Arroyo. Examining the Mechanical Equilibrium of Microscopic Stresses in Molecular Simulations. Phys. Rev. Lett. 114(25) (2015) DOI 10.1103/physrevlett.114.258102

X. Lin, S. Zhang, H. Ding, I. Levental, A. Gorfe. The aliphatic chain of cholesterol modulates bilayer interleaflet coupling and domain registration. FEBS Lett 590(19) (2016) DOI 10.1002/1873-3468.12383

G. Shahane, W. Ding, M. Palaiokostas, H. Azevedo, M. Orsi. Interaction of Antimicrobial Lipopeptides with Bacterial Lipid Bilayers. J Membrane Biol 252(4-5) (2019) DOI 10.1007/s00232-019-00068-3

C. Ting, M. Müller. Membrane stress profiles from self-consistent field theory. The Journal of Chemical Physics 146(10) DOI 10.1063/1.4977585

L. Wang, A. Haghmoradi, J. Liu, S. Xi, G. Hirasaki, C. Miller, W. Chapman. Modeling micelle formation and interfacial properties with iSAFT classical density functional theory. The Journal of Chemical Physics 146(12) DOI 10.1063/1.4978503

M. Motevaselian, N. Aluru. An EQT-based cDFT approach for thermodynamic properties of confined fluid mixtures. The Journal of Chemical Physics 146(15) DOI 10.1063/1.4979896

S. Min, M. Berkowitz. A comparative computational study of coarse-grained and all-atom water models in shock Hugoniot states. The Journal of Chemical Physics 148(14) DOI 10.1063/1.5011968

D. Grillo, J. Albano, E. Mocskos, J. Facelli, M. Pickholz, M. Ferraro. Mechanical properties of drug loaded diblock copolymer bilayers: A molecular dynamics study. The Journal of Chemical Physics 148(21) DOI 10.1063/1.5028377

L. Zhu, J. Wu, L. Liu, Y. Liu, Y. Yan, Q. Cui, X. Chen. Gating mechanism of mechanosensitive channel of large conductance: a coupled continuum mechanical-continuum solvation approach. Biomech Model Mechanobiol 15(6) (2016) DOI 10.1007/s10237-016-0783-4

S. Mashayak, M. Motevaselian, N. Aluru. An EQT-cDFT approach to determine thermodynamic properties of confined fluids. The Journal of Chemical Physics 142(24) DOI 10.1063/1.4922956

M. Wu, W. Wei, X. Liu, K. Liu, S. Li. Structure and dynamic properties of stretched water in graphene nanochannels by molecular dynamics simulation: effects of stretching extent. Phys. Chem. Chem. Phys. 21(35) (2019) DOI 10.1039/c9cp03981c

R. Dasgupta, M. Miettinen, N. Fricke, R. Lipowsky, R. Dimova. The glycolipid GM1 reshapes asymmetric biomembranes and giant vesicles by curvature generation. Proc Natl Acad Sci USA 115(22) (2018) DOI 10.1073/pnas.1722320115

A. Russo, M. Durán-Olivencia, S. Kalliadasis, R. Hartkamp. Macroscopic relations for microscopic properties at the interface between solid substrates and dense fluids. J. Chem. Phys. 150(21) DOI 10.1063/1.5094911

H. Mori, N. Matubayasi. Local viscoelasticity at resin-metal interface analyzed with spatial-decomposition formula for relaxation modulus. J. Chem. Phys. 151(11) DOI 10.1063/1.5109599