Abstract

The flexibility and cost efficiency of traffic monitoring using Unmanned Aerial Vehicles (UAVs) has made such a proposition an attractive topic of research. To date, the main focus was placed on the types of sensors used to capture the data, and the alternative data processing options to achieve good monitoring performance. In this work we move a step further, and explore the deployment strategies that can be realized for rapid traffic monitoring over particular regions of the transportation network by considering a monitoring scheme that captures data from a visual sensor on-board the UAV, and subsequently analyzes it through a specific vision processing pipeline to extract network state information. These innovative deployment strategies can be used in real-time to assess traffic conditions, while for longer periods, to validate the underlying mobility models that characterise traffic patterns. © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, in-cluding reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to serv-ers or lists, or reuse of any copyrighted component of this work in other works. C. Kyrkou, S. Timotheou, P. Kolios, T. Theocharides and C. G. Panayiotou, "Optimized vision-directed deployment of UAVs for rapid traffic monitoring," 2018 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, 2018, pp. 1-6. doi: 10.1109/ICCE.2018.8326145 https://www.ieee.org/publications_standards/publications/rights/rights_policies.html

Document type: Conference object

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

http://dx.doi.org/10.1109/icce.2018.8326145 under the license cc-by-sa
https://core.ac.uk/display/158532986,
https://academic.microsoft.com/#/detail/2795321791
Back to Top

Document information

Published on 01/01/2018

Volume 2018, 2018
DOI: 10.1109/icce.2018.8326145
Licence: Other

Document Score

0

Views 2
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?