Abstract

In general, a building survey includes geometry, structure, construction, material and history. In historical buildings over the time the building structure and usage can vary greatly. If a room offers good conditions, it will be used accordingly. The usage criteria are not limited to geometric and visual design features but also include thermal comfort. When determining the use of historical rooms and buildings, it makes sense to combine the results of the construction survey and literature research with a reconstruction of the indoor climate. Constructive adjustments, spatial extensions and social developments lead to a deviation from the originally planned and implemented situation over time. Which parameters have to be known in order to reconstruct the indoor climate of a historic building? This paper uses three examples to describe the requirements and procedure for determining the use of rooms that are no longer in their original state. The reconstructed spaces are an office in a former tobacco factory in Krems (Austria) [1], an art gallery in Yogyakarta (Indonesia) [2] and a traditional residential building is in Jeddah (Saudi Arabia) [3]. Dynamic thermal and hygrothermal simulations of building elements show the ability of materials to influence the indoor climate and the interaction between construction and indoor climate. By monitoring or defining the user’s presence and activities in a room the thermal interaction between construction and indoor climate is calculated. The detection of the airflow around and through the building provides important parameters for the assessment of thermal indoor comfort. The results were compared with the use of space as described in the literature or expected from the building survey. The method of reconstructing the indoor climate in historical buildings works. The results provide information for evaluating the original situation. With these findings, the potential inherent in a building can be better exploited for the adaptation of historical buildings to changing user requirements or climatic conditions.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

References

[1] Stumpf, W.; Winkler, M.; Trauninger, D.; Treytl, A.; Bratukhin, A.: CoolAIR –Automatisierung von Kastenfenstern zur Raumkühlung. Fachhochschule Burgenland, Tagungsband e-nova "Gebäude der Zukunft?", Band 22: p. 59-66, Leykam Buchverlagsgesellschaft, Graz, Austria 2018.

[2] Herbig, U.; Styhler‐Aydın, G.; Grandits, D.; Stampfer, L.; Pont, U.: The Architecture of the Affandi Museum – Approaches to a Piece of Art. 3rd Biennale ICIAP - International Conference on Indonesian Architecture and Planning, Yogyakarta, Indonesia 2016.

[3] Jaeger-Klein, C.; Stumpf, W.; Styhler-Aydin, G.; Radinger, G.: Analysis of Building Structures and Valorization of Cultural Heritage in Jeddah (KSA). In: Proceedings of the 10th International Conference on Structural Analysis on Historical Constructions, SAHC 2016, Leuven, Belgium: p. 77, Taylor and Francis Group, London 2016.

[4] CoolAIR – Prädiktiv geregelte passive Gebäudekühlung mittels natürlicher Nachtlüftung und tageslichtoptimierter Verschattung, research project at Danube University Krems, www.donau-uni.ac.at/de/universitaet/fakultaeten/bildung-kunst architektur/departments/bauen-umwelt/forschung/projekte/coolair.html, accessed January 15, 2020.

[5] meteonorm – Irradiation data for every place on Earth. Meteotest, Bern, Switzerland, www.meteonorm.com, accessed January 15, 2020.

[6] MASEA – Materialdatensammlung für die energetische Altbausanierung. Fraunhofer Institut für Bauphysik, Valley, Germany, www.masea-ensan.de. Accessed January 15, 2020.

[7] Stumpf, W.; Bednar, T.: Hygrothermal Behaviour of Building Components in Context with the Room Usage of a Historic Residential Building in Jeddah, KSA. TU Delft, WTA 4th International PhD Symposium, Proceedings, Delft, Netherlands 2017.

[8] ISO DIN 13786 Wärmetechnisches Verhalten von Bauteilen – Dynamisch-thermische Kenngrößen – Berechnungsverfahren (ISO 13786:2017), Beuth Verlag GmbH, Berlin, Germany, 2018.

[9] CBE Thermal Comfort Tool, Center for the Built Environment, University of California Berkeley, https://comfort.cbe.berkeley.edu, accessed January 15, 2020.

[10] ÖNORM EN ISO 7730:2006 Ergonomie der thermischen Umgebung – Analytische Bestimmung und Interpretation der thermischen Behaglichkeit durch Berechnung des PMV- und des PPD-Indexes und Kriterien der lokalen thermischen Behaglichkeit (ISO 7730:2005). Austrian Standards, Vienna Austria, 2006.

[11] ÖNORM EN 16798:2019 Energetische Bewertung von Gebäuden – Teil 1: Eingangsparameter für das Innenraumklima zur Auslegung und Bewertung der Energieeffizienz von Gebäuden bezüglich Raumluftqualität, Temperatur, Licht und Akustik – Module M1-6, Austrian Standards, Vienna, Austria, 2019.

[12] ASHRAE 55-2017 Thermal Environmental Conditions for Human Occupancy. American Standard by ASHRAE, 2017.

[13] WUFI pro – Wärme und Feuchte instationär. Standard program for evaluating moisture conditions in building envelopes, Fraunhofer Institute for Building Physics, Stuttgart, Germany, www.wufi.de, accessed January 15, 2020

Back to Top
GET PDF

Document information

Published on 30/11/21
Submitted on 30/11/21

Volume Interdisciplinary projects and case studies, 2021
DOI: 10.23967/sahc.2021.201
Licence: CC BY-NC-SA license

Document Score

0

Views 10
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?