Fast charging stations are a key element for the wide spreading of Electric Vehicles (EVs) by reducing the charging time to a range between 20 to 40 min. However, the integration of fast charging stations causes some adverse impacts on the Power Grid (PG), namely by the huge increase in the peak demand during short periods of time. This paper addresses the design of the power electronics converters for an EV DC fast charging station with local storage capability and easy interface of renewables. In the proposed topology, the energy storage capability is used to smooth the peak power demand, inherent to fast charging systems, and contributes to the stability of the PG. When integrated in a Smart Grid, the proposed topology may even return some of the stored energy back to the power grid, when necessary. The accomplishment of the aforementioned objectives requires a set of different power electronics converters that are described and discussed in this paper. This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and by FCT within the Project Scope: UID/CEC/00319/2013. This work is financed by the ERDF – COMPETE 2020 Programme, and FCT within project SAICTPAC/0004/2015‐POCI‐01‐0145–FEDER‐016434 and FCT within project PTDC/EEI-EEE/28813/2017. Mr. Luis A. M. Barros is supported by the doctoral scholarship PD/BD/143006/2018 granted by the Portuguese FCT agency. Mr. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by the Portuguese FCT agency.

Original document

The different versions of the original document can be found in:

http://dx.doi.org/10.1007/978-3-030-12950-7_10 under the license http://www.springer.com/tdm
Back to Top

Document information

Published on 01/01/2019

Volume 2019, 2019
DOI: 10.1007/978-3-030-12950-7_10
Licence: Other

Document Score


Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?