Abstract

The legacy DSB-AM (Double Sideband Amplitude Modulation) system used for today’s voice communication in the VHF-band is far away of meeting the demands of increasing air traffic and associated communication load. The introduction of VDL (VHF Digital Link) Mode 2 in Europe has already unfolded the paradigm shift from voice to data communication. Legacy systems, such as DSB-AM and VDL Mode 2 are expected to continue to be used in the future. However, they have to be supplemented in the near future by a new data link technology mainly for two reasons. First, only additional communication capacity can solve the frequency congestion and accommodate the traffic growth expected within the next 10-20 years in all parts of European airspace (ICAO-WGC, 2006). Second, the modernization of the Air Traffic Management (ATM) system as performed according to the SESAR (http://www.sesarju.eu/) and NextGen (http://www.faa.gov/nextgen/) programs in Europe and the US, respectively, heavily relies on powerful data link communications which VDL Mode 2 is unable to support. Based on the conclusions of the future communications study (Budinger, 2011), the ICAO Working Group of the Whole (ICAO-WGW, 2008) has foreseen a new technology operating in the L-band as the main terrestrial component of the Future Communication Infrastructure (FCI) (Fistas, 2011) for all phases of flight. Hence, such L-band technology shall meet the future ATM needs in the en-route and the Terminal Manoeuvring Area (TMA) flight domains as well as within airports. The latter application area will be supplemented by the AeroMACS technology at many large airports (Budinger, 2011). A final choice of technology for the L-band has not been made yet. Within the future communications study, various candidate technologies were considered and evaluated. However, it was found that none of the considered technologies could be fully recommended before the spectrum compatibility between the proposed systems and the legacy systems has been proven. This will require the development of prototypes for testing in a real environment against operational legacy equipment. The future communications study has identified two technology options for the L-band Digital Aeronautical Communication System (LDACS) as the most promising candidates for meeting the requirements on a future aeronautical data link. The first option, named LDACS1, is a Frequency-Division Duplex (FDD) configuration utilizing Orthogonal Frequency-Division Multiplexing (OFDM), a highly efficient multi-carrier modulation technique which enables the use of higher-order modulation schemes and Adaptive Coding and Modulation (ACM). OFDM has been adopted for current and future mobile radio communications technologies,


Original document

The different versions of the original document can be found in:

http://dx.doi.org/10.5772/29700
http://core.ac.uk/display/30999123,
https://cdn.intechopen.com/pdfs-wm/20439.pdf,
https://elib.dlr.de/74193,
https://academic.microsoft.com/#/detail/1484245205
Back to Top

Document information

Published on 01/01/2011

Volume 2011, 2011
DOI: 10.5772/29700
Licence: Other

Document Score

0

Views 1
Recommendations 0

Share this document

Keywords

claim authorship

Are you one of the authors of this document?