Abstract

The development of overtopping protection systems often requires detailed analyses of complex physical phenomena. This hinders the comprehensive knowledge of their behavior, and therefore the development of suitable design criteria. In recent years, the authors have developed and validated different methods, combining continuous, particle and discrete numerical techniques, to obtain accurate and reliable solutions of different numerical problems involving fluid-soil-structure interaction. In this contribution, some applications of these methods to the study of dam protection against overtopping are presented. The main advantages of this approach include the ability to extract results of the governing variables (pressure, velocity) at any location of the domain, and the possibility to consider scenarios without the restrictions of the experimental facilities (flow rates, size, scale effects). In particular, the contribution gathers examples of application of numerical methods in a) analysis of rockfill dam stability against overtopping, including seepage evolution and deformation of the downstream shoulder, and b) stability analysis of wedge-shaped-blocks subjected to vandalism.

Back to Top

Document information

Published on 01/01/2016

Licence: CC BY-NC-SA license

Document Score

0

Views 2
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?