The fractional step method is a technique that results in a computationally-efficient implementation of Navier–Stokes solvers. In the finite element-based models, it is often applied in conjunction with implicit time integration schemes. On the other hand, in the framework of finite difference and finite volume methods, the fractional step method had been successfully applied to obtain predictor-corrector semi-explicit methods. In the present work, we derive a scheme based on using the fractional step technique in conjunction with explicit multi-step time integration within the framework of Galerkin-type stabilized finite element methods. We show that under certain assumptions, a Runge–Kutta scheme equipped with the fractional step leads to an efficient semi-explicit method, where the pressure Poisson equation is solved only once per time step. Thus, the computational cost of the implicit step of the scheme is minimized. The numerical example solved validates the resulting scheme and provides the insights regarding its accuracy and computational efficiency

Full Document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2018

DOI: 10.3390/app8010119
Licence: CC BY-NC-SA license

Document Score


Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?