Published in International Journal of Space Structures, Vol. 24 (4), pp. 205-210, 2009
DOI: 10.1260/026635109789968263

Abstract

We propose here an efficient approach for treating the interaction between membranes and fluids. Slight compressibility of the fluid is assumed. Classical total Lagrangian formulation including wrinkling is adopted for the membrane representation, whereas fluid is treated in an updated Lagrangian manner, developed in the current work. Assumption of slight compressibility of the fluid enables one to define the monolithic fluid-membrane system in a natural way. The displacements are the primary variables of both the fluid and the membrane domains. The formulation adopts the Particle Finite Element Method (PFEM) philosophy for free-surface identification and mesh regeneration. Three examples illustrate the functionality of the formulation in application to FSI problems involving motion of membranes in water.

E. Oñate, F. Bellomo, V. Monteiro, S. Oller, L. Nallim. Characterization of Mechanical Properties of Biological Tissue: Application to the FEM Analysis of the Urinary Bladder. (2013) DOI 10.1002/9781118402955.ch15

P. Ryzhakov. A modified fractional step method for fluid–structure interaction problems. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 33(1-2) DOI 10.1016/j.rimni.2015.09.002

E. Oñate, S. Idelsohn, M. Celigueta, R. Rossi, J. Marti, J. Carbonell, P. Ryzhakov, B. Suárez. Advances in the Particle Finite Element Method (PFEM) for Solving Coupled Problems in Engineering. (2011) DOI 10.1007/978-94-007-0735-1_1

S. Idelsohn, M. Mier-Torrecilla, J. Marti, E. Oñate. The Particle Finite Element Method for Multi-Fluid Flows. (2011) DOI 10.1007/978-94-007-0735-1_5

P. Dadvand, R. Rossi, E. Oñate. An Object-oriented Environment for Developing Finite Element Codes for Multi-disciplinary Applications. Arch Computat Methods Eng 17(3) (2010) DOI 10.1007/s11831-010-9045-2