The main aim of the work is to study the effect of different fibres (steel, glass and basalt) on resistance of blast furnace slag-based alkali-activated mortar in acidic environment. The alkaliactivated slag mortars were exposed to 5% sulfuric and acetic acid solutions for 30 days. Mass change, compressive strength and microstructural changes were evaluated. In plain mortar, it was observed that 70% of the strength was retained in acetic acid environment whereas only 20% of residual strength remains in sulphuric acid environment. FTIR spectroscopy shows the degradation of the matrix, which implies the alkali-activated mortar was more vulnerable in sulphuric acid environment due to its aggressive nature compared to acetic acid. Decalcification and formation of calcium acetate also hinders the further progress of damage in acetic acid attack. Fibres helped in improving the performance of the mortar by holding the matrix together when the degradation occurred in acidic environment. Compared to plain mortar, incorporation of steel fibres exhibited a maximum strength retention of 19% in acetic acid and 7% in sulphuric acid, followed by glass and basalt fibres. SEM images clearly show the debonding of fibres and disintegration of matrix in acidic environment, which resulted in strength loss.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 25/09/20
Submitted on 17/09/20

DOI: 10.23967/dbmc.2020.109
Licence: CC BY-NC-SA license

Document Score


Views 48
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?