Published in Int. J. Numer. Meth. Fluids Vol. 60 (9), pp. 937-971, 2008
doi:10.1002/fld.1892

Abstract

The finite point method (FPM) is a meshless technique, which is based on both, a weighted least‐squares numerical approximation on local clouds of points and a collocation technique which allows obtaining the discrete system of equations. The research work we present is part of a broader investigation into the capabilities of the FPM to deal with 3D applications concerning real compressible fluid flow problems. In the first part of this work, the upwind‐biased scheme employed for solving the flow equations is described. Secondly, with the aim of exploiting the meshless capabilities, an h‐adaptive methodology for 2D and 3D compressible flow calculations is developed. This adaptive technique applies a solution‐based indicator in order to identify local clouds where new points should be inserted in or existing points could be safely removed from the computational domain. The flow solver and the adaptive procedure have been evaluated and the results are encouraging. Several numerical examples are provided in order to illustrate the good performance of the numerical methods presented.

J. Pons-Prats, G. Bugeda, F. Zárate, E. Oñate. Robust design optimization in aeronautics using stochastic analysis and evolutionary algorithms. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 225(10) (2011) DOI 10.1177/0954410011412131

X. Li. On error estimator and adaptivity in the meshless Galerkin boundary node method. Comput Mech 50(1) (2011) DOI 10.1007/s00466-011-0673-7

E. Ortega, R. Flores, E. Oñate, S. Idelsohn. A-posteriori error estimation for the finite point method with applications to compressible flow. Comput Mech 60(2) (2017) DOI 10.1007/s00466-017-1402-7

C. BUACHART, W. KANOK-NUKULCHAI, E. ORTEGA, E. OÑATE. A SHALLOW WATER MODEL BY FINITE POINT METHOD. Int. J. Comput. Methods 11(01) DOI 10.1142/s0219876213500473

M. Hashemabadi, M. Hadidoolabi. An accurate and efficient gridless method based on implicit, fast, and constrained weights optimization schemes for compressible flows. J Braz. Soc. Mech. Sci. Eng. 40(2) (2018) DOI 10.1007/s40430-018-0978-y

E. Ortega, E. Oñate, S. Idelsohn, R. Flores. A meshless finite point method for three-dimensional analysis of compressible flow problems involving moving boundaries and adaptivity. Int. J. Numer. Meth. Fluids 73(4) (2013) DOI 10.1002/fld.3799

E. Ortega, E. Oñate, S. Idelsohn, R. Flores. Application of the finite point method to high-Reynolds number compressible flow problems. Int. J. Numer. Meth. Fluids 74(10) (2014) DOI 10.1002/fld.3871

J. Pons-Prats, G. Bugeda, F. Zárate, E. Oñate. Optimización robusta en aplicaciones aeronáuticas con la combinación de cálculo estocástico y algoritmos evolutivos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 28(1) DOI 10.1016/j.rimni.2011.11.001

E. Ortega, E. Oñate, S. Idelsohn, C. Buachart. An adaptive finite point method for the shallow water equations. Int. J. Numer. Meth. Engng. 88(2) (2011) DOI 10.1002/nme.3171

J. Bajko, P. Niedoba, L. Čermák, M. Jícha. Simulation of the acoustic wave propagation using a meshless method. EPJ Web Conf. 143 (2017) DOI 10.1051/epjconf/201714302003