The automotive domain is an excellent domain for investigating augmented cognition methods, and one of the domains that can provide the applications. We developed, applied and tested indirect (or derived) measures to estimate driver state risks, validated by direct state-sensing methods, with major European vehicle manufacturers, suppliers and research institutes in the project AIDE (Adaptive Integrated Driver-vehicle InterfacE). The project developed an interface with the driver that integrates different advanced driver assistant systems and in-vehicle information systems and adapted the interface to different driver or traffic conditions. This paper presents an overview of the AIDE project and will then focus on the adaptation aspect of AIDE. Information presented to the driver could be adapted on basis of environmental conditions (weather and traffic), and on basis of assessed workload, distraction, and physical condition of the driver. The adaptation of how information is presented to the driver or the timing of when information is presented to the driver is of importance. Adapting information, however, also results in systems that are less transparent to the driver. © 2009 Springer.

Original document

The different versions of the original document can be found in:

http://dx.doi.org/10.1007/978-3-642-02812-0_2 under the license http://www.springer.com/tdm
Back to Top

Document information

Published on 01/01/2009

Volume 2009, 2009
DOI: 10.1007/978-3-642-02812-0_2
Licence: Other

Document Score


Views 12
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?