Abstract

The present Conference was intended to provide a forum to discuss future trends and developments that may affect the way Computational Aerosciences are conducted. One way to venture statements about the future is via exptrapolations from historical trends. In each of the individual disciplines that comprise the aerosciences - aerodynamics, structures, propulsion, control, stealth, etc. - one observes the typical bottom-up trend. Starting from sufficiently simple geometries and equations to have an impact and be identified as 'computational' (e.g., potential flow in 2-D for aerodynamics), more and more realism is added at the geometrical and PDE level. While the engineering process (Figure 1) follows the line: project, objectives, optimization goals, discipline, problem definition, gridding, solution of the PDE and evaluation, the developments in the Computational Sciences tend to run in the opposite direction: solvers, mesh generators, preprocessors, multi-disciplinary links, complete database. At present (1998), for commercial software we are at the threshold mesh generators/ preprocessors, so we can estimate that sometime during the next decade we will see the widespread use of multi-disciplinary links and towards the end of the decade the appearance of integrated analysis and simulation databases. At the research level, we are already entering the complete database approach.

Back to Top

Document information

Published on 01/01/2011

DOI: 10.1007/978-94-010-0948-5_8
Licence: CC BY-NC-SA license

Document Score

0

Views 2
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?