The aim of the contribution is to illustrate strengthening design in regard to the conservation of Palazzo Murena in Perugia, designed in the eighteenth century by the prominent Architect Luigi Vanvitelli. Starting from an accurate historical analysis and taking into account experimental campaign and results of numerical analysis, the vulnerable elements of the construction have been highlighted. A local reinforcement intervention is proposed with the aim of retain the historical value of the architectural characteristics; this consists of the application of plaster with Fiber Reinforced Cementitious Matrix, F.R.C.M., to achieve an adequate strength, without adding supplemental weight to the masonry structure and therefore avoiding an increase of the seismic vulnerability. The benefits of the application of F.R.C.M. materials, also with respect to different reinforcement techniques are broaden.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document


[1] Liberotti, R., Cluni, F. and Gusella V. Vulnerability and seismic improvement of architectural heritage: the case of Palazzo Murena. Earthquakes and Structures (2020) 18 (3): 321–335.

[2] NTC 2018. Decreto Ministeriale 14 Gennaio2018, Aggiornamento delle «Norme tecniche per le costruzioni», Supplemento ordinario alla “Gazzetta Ufficiale„ n. 42 del 20 febbraio 2018 - Serie generale, Ministero delle Infrastrutture e dei Trasporti; Roma, Italy.

[3] Circ. No7 (2019), Circolare del Ministero delle infrastrutture e dei trasporti 21 gennaio 2019, n. 7 C.S.LL.PP., Istruzioni per l’applicazione dell’«Aggiornamento delle “Norme tecniche per le costruzioni”» di cui al decreto ministeriale 17 gennaio 2018., Supplemento ordinario alla “Gazzetta Ufficiale” n. 35 del 11 febbraio 2019 - Serie generale, Ministero delle Infrastrutture e dei Trasporti; Roma, Italy.

[4] Rotili M. Vita di Luigi Vanvitelli. Timawo e Burgo, Napoli, Italy, (1975).

[5] Chiacchella R. Un quartiere e la sua storia: La Conca di Perugia. La Conca di Perugia itinerario per una conoscenza e una proposta. Quaderni Regione dell’Umbria, Perugia: 97– 100, (1975).

[6] Dozza, G. Università Di Perugia. Sette Secoli Di Modernità 1308-1976. Delta Editrice, Perugia, Italy, (1975).

[7] Sorignani, C. UNI|TECA Progetto architettonico di trasformazione in Gipsoteca dell’edificio sede dell’ufficio Economato dell’Università degli Studi di Perugia. Master thesis, University of Perugia, Perugia, Italy, (2018).

[8] CNR-DT 215/2018, Istruzioni per la Progettazione, l’Esecuzione ed il Controllo di Interventi di Consolidamento Statico mediante l’utilizzo di Compositi Fibrorinforzati a Matrice Inorganica, CNR, 2018.

[9] Lignola, G.P., Di Ludovico, M., Prota, A., Aiello, M. A. and Varum H. Design rules for inplane shear strengthening of masonry with FRCM. 9th International Conference on FRP Composites in Civil Engineering CICE 2018, Paris, France, July.

[10] Lourenço, P.B., Oliveira, D.V., Leite, J.C., Ingham J.M., Modena, C. and da Porto, F. Simplified indexes for the seismic assessment of masonry buildings: International database and validation. Engineering Failure Analysis (2013) 34: 508–605. https://doi.org/10.1016/j.engfailanal.2013.02.014

[11] Cavalagli, N., Gusella, V. and Liberotti, R. The Role of Shape Irregularities on the Lateral Loads Bearing Capacity of Circular Masonry Arches. In: Carcaterra A., Paolone A., Graziani G. (Eds) Proceedings of XXIV AIMETA Conference 2019. AIMETA 2019. Lecture Notes in Mechanical Engineering. Springer, Cham, (2020), pp. 2069–2081.

[12] Autuori, G., Cluni, F., Gusella, V. and Pucci, P. Effects of the fractional laplacian order on the nonlocal elastic rod response. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering 3 (3) (2017) September, Article number 030902

[13] Autuori, G., Cluni, F., Gusella, V. and Pucci, P. Mathematical models for nonlocal elastic Composite materials. Advan. Nonlin. Anal. (2017) 6 (4): 355–382. https://doi.org/10.1515/anona-2016-0186.

[14] Kimia (2019), Interventi-strutturali-resine-tessuti-pultrusi/frcm; Kimia S.p.a., P.te Felcino (Perugia), Italy. www.kimia.it

[15] Pourfalah S., Cotsovos D.M. and Suryanto B. Modelling the out-of-plane behaviour of masonry walls retrofitted with engineered cementitious composites. Computers and Structures (2018) 201: 58–79.

[16] D'Ambra, C., Lignola, G.P., Prota, A., Sacco E. and Fabbrocino F. Experimental performance of FRCM retrofit on out-of-plane behaviour of clay brick walls. Composites Part B (2018) 148: 198–206.

[17] Gioffré, M., Gusella, V. and Cluni, F. Performance evaluation of monumental bridges: Testing and monitoring 'Ponte delle Torri' in Spoleto. Structure and Infrastructure Engineering (2008) 4 (2): 95–106.

[18] Zampieri, P., Gonzalez-Libreros, J., Simoncello, N. and Pellegrino C. Strengthening of Masonry Arches with FRCM Composites: A Review. Key Engineering Materials (2019) 817: 251–258. https://doi.org/10.4028/www.scientific.net/kem.817.251.

[19] Alecci, V., Focacci, F., Rovero, L., Stipo, G., Mantegazza, G. and de Stefano M. FRCM Composites for Strengthening of Brick Masonry Arches. Key Engineering Materials (2017) 747: 174–181. https://doi.org/10.4028/www.scientific.net/kem.747.174.

Back to Top

Document information

Published on 30/11/21
Submitted on 30/11/21

Volume Management of heritage structures and conservation strategies, 2021
DOI: 10.23967/sahc.2021.313
Licence: CC BY-NC-SA license

Document Score


Views 4
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?