Global navigation satellite system (GNSS) is widely regarded as the primary positioning solution for intelligent transport system (ITS) applications. However, its performance could degrade, due to signal outages and faulty-signal contamination, including multipath and non-line-of-sight reception. Considering the limitation of the performance and computation loads in mass-produced automotive products, this research investigates the methods for enhancing GNSS-based solutions without significantly increasing the cost for vehicular navigation system. In this study, the measurement technique of the odometer in modern vehicle designs is selected to integrate the GNSS information, without using an inertial navigation system. Three techniques are implemented to improve positioning accuracy; (a) Time-differenced carrier phase (TDCP) based filter: A state-augmented extended Kalman filter is designed to incorporate TDCP measurements for maximizing the effectiveness of phase-smoothing; (b) odometer-aided constraints: The aiding measurement from odometer utilizing forward speed with the lateral constraint enhances the state estimation; the information based on vehicular motion, comprising the zero-velocity constraint, fault detection and exclusion, and dead reckoning, maintains the stability of the positioning solution; (c) robust regression: A weighted-least-square based robust regression as a measurement-quality assessment is applied to adjust the weightings of the measurements adaptively. Experimental results in a GNSS-challenging environment indicate that, based on the single-point-positioning mode with an automotive-grade receiver, the combination of the proposed methods presented a root-mean-square error of 2.51 m, 3.63 m, 1.63 m, and 1.95 m for the horizontal, vertical, forward, and lateral directions, with improvements of 35.1%, 49.6%, 45.3%, and 21.1%, respectively. The statistical analysis exhibits 97.3% state estimation result in the horizontal direction for the percentage of epochs that had errors of less than 5 m, presenting that after the intervention of proposed methods, the positioning performance can fulfill the requirements for road level applications.

Document type: Article

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

https://academic.microsoft.com/#/detail/3048807157 under the license cc-by
under the license https://creativecommons.org/licenses/by/4.0/
Back to Top

Document information

Published on 01/01/2020

Volume 2020, 2020
DOI: 10.3390/rs12162550
Licence: Other

Document Score


Views 3
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?