Background</jats:title><jats:p>The complex nature of biological data has driven the development of specialized software tools. Scientific workflow management systems simplify the assembly of such tools into pipelines, assist with job automation and aid reproducibility of analyses. Many contemporary workflow tools are specialized and not designed for highly complex workflows, such as with nested loops, dynamic scheduling and parametriza-tion, which is common in e.g. machine learning.</jats:p></jats:sec><jats:sec><jats:title>Findings</jats:title><jats:p>SciPipe is a workflow programming library implemented in the programming language Go, for managing complex and dynamic pipelines in bioinformatics, cheminformatics and other fields. SciPipe helps in particular with workflow constructs common in machine learning, such as extensive branching, parameter sweeps and dynamic scheduling and parametrization of downstream tasks. SciPipe builds on Flow-based programming principles to support agile development of workflows based on a library of self-contained, reusable components. It supports running subsets of workflows for improved iterative development, and provides a data-centric audit logging feature that saves a full audit trace for every output file of a workflow, which can be converted to other formats such as HTML, TeX and PDF on-demand. The utility of SciPipe is demonstrated with a machine learning pipeline, a genomics, and a transcriptomics pipeline.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>SciPipe provides a solution for agile development of complex and dynamic pipelines, espe-cially in machine leaning, through a flexible programming API suitable for scientists used to programming or scripting.</jats:p></jats:sec

Document type: Article

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

http://dx.doi.org/10.1093/gigascience/giz044 under the license cc-by
https://academic.microsoft.com/#/detail/2949297597 under the license http://creativecommons.org/licenses/by/4.0/
  • [ ]

DOIS: 10.1093/gigascience/giz044 10.1101/380808

Back to Top

Document information

Published on 01/01/2018

Volume 2018, 2018
DOI: 10.1093/gigascience/giz044
Licence: Other

Document Score


Views 1
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?