Published in Int. J. Numer. Meth. Fluids Vol. 75 (9), pp. 621-644, 2014
doi: 10.1002/fld.3908

Abstract

Multifluids are those fluids in which their physical properties (viscosity or density) vary internally and abruptly forming internal interfaces that introduce a large nonlinearity in the Navier–Stokes equations. For this reason, standard numerical methods require very small time steps in order to solve accurately the internal interface position. In a previous paper, the authors developed a particle‐based method (named particle finite element method (PFEM)) based on a Lagrangian formulation and FEM for solving the fluid mechanics equations for multifluids. PFEM was capable of achieving accurate results, but the limitation of small time steps was still present. In this work, a new strategy concerning the time integration for the analysis of multifluids is developed allowing time steps one order of magnitude larger than the previous method. The advantage of using a Lagrangian solution with PFEM is shown in several examples. All kind of heterogeneous fluids (with different densities or viscosities), multiphase flows with internal interfaces, breaking waves, and fluid separation may be easily solved with this methodology without the need of small time steps.

S. Idelsohn, J. Gimenez, N. Nigro. Multifluid flows with weak and strong discontinuous interfaces using an elemental enriched space. Int J Numer Meth Fluids 86(12) (2017) DOI 10.1002/fld.4477

M. Luo, C. Koh, M. Gao, W. Bai. A particle method for two-phase flows with large density difference. Int. J. Numer. Meth. Engng 103(4) (2015) DOI 10.1002/nme.4884

P. Becker, S. Idelsohn. A multiresolution strategy for solving landslides using the Particle Finite Element Method. Acta Geotech. 11(3) (2016) DOI 10.1007/s11440-016-0464-6

A. Larese. A Lagrangian PFEM approach for non-Newtonian viscoplastic materials. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 33(3-4) DOI 10.1016/j.rimni.2016.07.002

M. Zhu, I. Elkhetali, M. Scott. Validation of
OpenSees
for Tsunami Loading on Bridge Superstructures. J. Bridge Eng. 23(4) DOI 10.1061/(asce)be.1943-5592.0001221

J. Chen, M. Hillman, S. Chi. Meshfree Methods: Progress Made after 20 Years. J. Eng. Mech. 143(4) DOI 10.1061/(asce)em.1943-7889.0001176

F. Salazar, J. San-Mauro, M. Celigueta, E. Oñate. Air demand estimation in bottom outlets with the particle finite element method. Comp. Part. Mech. 4(3) (2016) DOI 10.1007/s40571-016-0117-4

P. Nadukandi, B. Servan-Camas, P. Becker, J. Garcia-Espinosa. Seakeeping with the semi-Lagrangian particle finite element method. Comp. Part. Mech. 4(3) (2016) DOI 10.1007/s40571-016-0127-2

J. Gimenez, D. Ramajo, S. Márquez Damián, N. Nigro, S. Idelsohn. An assessment of the potential of PFEM-2 for solving long real-time industrial applications. Comp. Part. Mech. 4(3) (2016) DOI 10.1007/s40571-016-0135-2

J. Marti, P. Ryzhakov. An explicit/implicit Runge–Kutta-based PFEM model for the simulation of thermally coupled incompressible flows. Comp. Part. Mech. 7(1) (2019) DOI 10.1007/s40571-019-00229-0

F. Del Pin, C. Huang, I. Çaldichoury, R. Paz. On the performance and accuracy of PFEM-2 in the solution of biomedical benchmarks. Comp. Part. Mech. 7(1) (2019) DOI 10.1007/s40571-019-00241-4

M. Cremonesi, S. Meduri, U. Perego. Lagrangian–Eulerian enforcement of non-homogeneous boundary conditions in the Particle Finite Element Method. Comp. Part. Mech. 7(1) (2019) DOI 10.1007/s40571-019-00245-0

R. Bravo, P. Ortiz, S. Idelsohn, P. Becker. Sediment transport problems by the particle finite element method (PFEM). Comp. Part. Mech. 7(1) (2019) DOI 10.1007/s40571-019-00255-y

J. Colom-Cobb, J. Garcia-Espinosa, B. Servan-Camas, P. Nadukandi. A second-order semi-Lagrangian particle finite element method for fluid flows. Comp. Part. Mech. 7(1) (2019) DOI 10.1007/s40571-019-00258-9

J. Gimenez, P. Morin, N. Nigro, S. Idelsohn. Numerical Comparison of the Particle Finite Element Method Against an Eulerian Formulation. (2016) DOI 10.1007/978-3-319-40827-9_2

N. Nigro, J. Gimenez, S. Idelsohn. Recent Advances in the Particle Finite Element Method Towards More Complex Fluid Flow Applications. (2014) DOI 10.1007/978-3-319-06136-8_12

O. Eugenio. Finite increment calculus (FIC): a framework for deriving enhanced computational methods in mechanics. Adv. Model. and Simul. in Eng. Sci. 3(1) (2016) DOI 10.1186/s40323-016-0065-9

P. Becker, S. Idelsohn, E. Oñate. A unified monolithic approach for multi-fluid flows and fluid–structure interaction using the Particle Finite Element Method with fixed mesh. Comput Mech 55(6) (2014) DOI 10.1007/s00466-014-1107-0

P. Nadukandi. Numerically stable formulas for a particle-based explicit exponential integrator. Comput Mech 55(5) (2015) DOI 10.1007/s00466-015-1142-5

Y. Bazilevs, K. Kamran, G. Moutsanidis, D. Benson, E. Oñate. A new formulation for air-blast fluid–structure interaction using an immersed approach. Part I: basic methodology and FEM-based simulations. Comput Mech 60(1) (2017) DOI 10.1007/s00466-017-1394-3