Abstract

A diferencia de la optimización usual, ñas optimización estocástica consiste en una minimización de una función de coste sujeta a condiciones expresadas en forma de probabilidades en lugar de funciones deterministas, lo que la convierte en un problema mucho más complejo. En esta clase de optimización son comunes los problemas donde la función o funciones objetivo y sus condiciones son el producto de un algoritmo numérico bastante complicado que no es ni diferenciable ni esplícito. En estos casos no es posible utilizar los algoritmos de optimización basados en el gradiente y, además, los tiempos de evaluación funcional para el cálculo de las probabilidades hacen el problema inabordable. En el presente artículo se propone y se evalúa un procedimiento para superar estas dificultades utilizando redes neuronales artificiales y algoritmos evolutivos.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/10/02
Accepted on 01/10/02
Submitted on 01/10/02

Volume 18, Issue 4, 2002
Licence: CC BY-NC-SA license

Document Score

0

Views 3
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?