The arbitrary Lagrangian—Eulerian (ALE) formulation, which is already well established in the hydrodynamics and fluid-structure interaction fields, is extended to materials with memory, namely, non- linear path-dependent materials. Previous attempts to treat non- linear solid mechanics with the ALE description have, in common, the implicit interpolation technique employed. Obviously, this implies a numerical burden which may be uneconomical and may induce to give up this formulation, particularly in fast-transient dynamics where explicit algorithms are usually employed. Here, several applications are presented to show that if adequate stress updating techniques are implemented, the ALE formulation could be much more competitive than classical Lagrangian computations when large deformations are present. Moreover, if the ALE technique is interpreted as a simple interpolation enrichment, adequate—in opposition to distorted or locally coarse—meshes are employed. Notice also that impossible computations (or at least very involved numerically) with a Lagrangian code are easily implementable in an ALE analysis. Finally, it is important to observe that the numerical examples shown range from a purely academic test to real engineering simulations. They show the effective applicability of this formulation to non-linear solid mechanics and, in particular, to impact, coining or forming analysis.

H. Askes, L. Sluys, B. de Jong. Remeshing techniques for r-adaptive and combined h/r-adaptive analysis with application to 2D/3D crack propagation. Structural Engineering and Mechanics 12(5) DOI 10.12989/sem.2001.12.5.475

A. Khoei. Modeling of Powder Forming Processes; Application of a Three-Invariant Cap Plasticity and an Enriched Arbitrary Lagrangian-Eulerian FE Method. (2010) DOI 10.1002/9783527632312.ch7

R. Boman, J. Ponthot. Efficient ALE mesh management for 3D quasi-Eulerian problems. Int. J. Numer. Meth. Engng 92(10) (2012) DOI 10.1002/nme.4361

P. Farah, W. Wall, A. Popp. An implicit finite wear contact formulation based on dual mortar methods. Int. J. Numer. Meth. Engng 111(4) (2016) DOI 10.1002/nme.5464

F. Armero, E. Love. An arbitrary Lagrangian-Eulerian finite element method for finite strain plasticity. Int. J. Numer. Meth. Engng. 57(4) (2003) DOI 10.1002/nme.684

A. Khoei, A. Azami, M. Anahid, R. Lewis. A three-invariant hardening plasticity for numerical simulation of powder forming processes via the arbitrary Lagrangian–Eulerian FE model. Int. J. Numer. Meth. Engng 66(5) (2006) DOI 10.1002/nme.1550

G. Pijaudier-Cabot, L. Bodé, A. Huerta. Arbitrary Lagrangian-Eulerian finite element analysis of strain localization in transient problems. Int. J. Numer. Meth. Engng. 38(24) DOI 10.1002/nme.1620382406

Y. Vidal, J. Bonet, A. Huerta. Stabilized updated Lagrangian corrected SPH for explicit dynamic problems. Int. J. Numer. Meth. Engng 69(13) (2007) DOI 10.1002/nme.1859

S. Okazawa, K. Kashiyama, Y. Kaneko. Eulerian formulation using stabilized finite element method for large deformation solid dynamics. Int. J. Numer. Meth. Engng 72(13) (2007) DOI 10.1002/nme.2057

F. Casadei, J. Halleux. Binary spatial partitioning of the central-difference time integration scheme for explicit fast transient dynamics. Int. J. Numer. Meth. Engng 78(12) DOI 10.1002/nme.2533

A. Rodríguez-Ferran, A. Pérez-Foguet, A. Huerta. Arbitrary Lagrangian-Eulerian (ALE) formulation for hyperelastoplasticity. Int. J. Numer. Meth. Engng. 53(8) (2001) DOI 10.1002/nme.362

J. Donea, A. Huerta, J. Ponthot, A. Rodríguez-Ferran. Arbitrary Lagrangian-Eulerian Methods. (2017) DOI 10.1002/9781119176817.ecm2009

C. de Saracibar, R. Boman, P. Bussetta, J. Cajas, M. Cervera, M. Chiumenti, A. Coll, P. Dadvand, J. Hernández Ortega, G. Houzeaux, M. de Riera, J. Ponthot. Numerical Methods. (2016) DOI 10.1002/9783527693566.ch7

M. Such, J. Jimenez-Octavio, A. Carnicero, C. Sanchez-Rebollo. Simulación de cargas móviles sobre estructuras mediante un mallado móvil de elementos finitos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 31(4) DOI 10.1016/j.rimni.2014.06.003

M. Garcia, M. Kaliske, J. Wang, G. Bhashyam. A Consistent Implementation of Inelastic Material Models into Steady State Rolling. Tire Science and Technology 44(3) DOI 10.2346/tire.16.440302

A. Collé, J. Limido, J. Vila. An Accurate SPH Scheme for Dynamic Fragmentation modelling. EPJ Web Conf. 183 (2018) DOI 10.1051/epjconf/201818301030

X. Yu, D. Zou, X. Kong, L. Yu. Large-deformation finite element analysis of the interaction between concrete cut-off walls and high-plasticity clay in an earth core dam. Engineering Computations 34(4) DOI 10.1108/ec-04-2016-0118

J. Donea, A. Huerta, J. Ponthot, A. Rodrï¿½ï¿½guez-Ferran. Arbitrary Lagrangian-Eulerian Methods. (2004) DOI 10.1002/0470091355.ecm009

M. Gadala, J. Wang. A practical procedure for mesh motion in arbitrary Lagrangian-Eulerian method. Engineering with Computers 14(3) DOI 10.1007/bf01215976

A. Khoei, M. Anahid, K. Shahim, H. DorMohammadi. Arbitrary Lagrangian–Eulerian method in plasticity of pressure-sensitive material: application to powder forming processes. Comput Mech 42(1) (2008) DOI 10.1007/s00466-007-0232-4