Abstract

For long-distance water transfer projects, the residual air mass in the pipeline will not only reduce the efficiency, but also be detrimental to the safety of the system. In order to study the influence of the water flow velocity of the pressurized water pipeline and the pipeline angle of the hump on the motion characteristics of the residual air mass, an experimental platform with Particle Image Velocimetry (PIV) measuring system was constructed to analyse the flow field. The RSM turbulence model was combined with the VOF multiphase flow model to construct a local high-point gas-liquid two-phase fluid dynamics model for numerical simulation. The results showed that with the increase of water flow velocity, the local hump residual air mass would go through three states, namely, no bubble generation, air bubble was generated and partial discharged, and air mass discharge at one time. If the gas was greater than a certain volume, the increase in the water flow rate required to carry the air mass out of the hump at one time would slow down; the larger the local hump angle was, the greater the water flow rate was required to carry the gas out of the local hump part.

Document type: Article

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

https://doaj.org/toc/2261-236X under the license cc-by
http://dx.doi.org/10.1051/matecconf/201824601113
https://academic.microsoft.com/#/detail/2904279359 under the license http://creativecommons.org/licenses/by/4.0/
Back to Top

Document information

Published on 01/01/2018

Volume 2018, 2018
DOI: 10.1051/matecconf/201824601113
Licence: Other

Document Score

0

Views 4
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?