Abstract

‡A sequential optimization method is applied to manage air traffic flow under uncertainty in airspace capacity and demand. To support its testing, a decision support system is developed by integrating a deterministic integer programming model for assigning delays to aircraft under en route capacity constraints to reactively account for system uncertainties. To reduce computational complexity, the model assigns only departure controls, while a tactical control loop consisting of a shortest path routing algorithm and an airborne holding algorithm refines the strategic plan to keep flights from deviating into capacity constrained airspace. This integrated approach is used to conduct thirty-two, 6-hour fast-time simulation experiments to explore variations in the number and severity of departure controls, tactical reroutes, and airborne holding controls. Three feasible types of traffic flow controls emerged. The first type relied primarily on departure controls and strategic reroutes on the 300 to 400 nmi look-ahead horizon and worked best when rerouting occurred at a frequency of 10 to 15 minutes. The second type generated more tactical reroutes on the 200 ‐ 300 nmi look-ahead horizon and required little airborne holding or pre-departure control when rerouting occurred at a frequency of 5 minutes. The last type relied heavily on airborne holding controls and infrequent updates to the weather avoidance reroutes. This last type was the least desirable solution due to the impact of its airborne holding on airspace complexity and airspace users.


Original document

The different versions of the original document can be found in:

http://dx.doi.org/10.2514/1.40300
http://dx.doi.org/10.2514/6.2008-6823
https://core.ac.uk/display/103858032,
https://academic.microsoft.com/#/detail/2060340232


DOIS: 10.2514/6.2008-6823 10.2514/1.40300

Back to Top

Document information

Published on 01/01/2008

Volume 2008, 2008
DOI: 10.2514/6.2008-6823
Licence: CC BY-NC-SA license

Document Score

0

Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?