Abstract

Biofuels can contribute substantially to energy security and socio-economic development. However, significant disagreement and controversies exist regarding the actual energy and greenhouse gas (GHG) savings of biofuels displacing fossil fuels. A large number of publications that analyze the life-cycle of biofuel systems present varying and sometimes contradictory conclusions, even for the same biofuel type (Farrell et al., 2006; Malca and Freire, 2004, 2006, 2011; Gnansounou et al., 2009; van der Voet et al., 2010; Borjesson and Tufvesson, 2011). Several aspects have been found to affect the calculation of energy and GHG savings, namely land use change issues and modeling assumptions (Gnansounou et al., 2009; Malca and Freire, 2011). Growing concerns in recent years that the production of biofuels might not respect minimum sustainability requirements led to the publication of Directive 2009/28/EC in the European Union (EPC 2009) and the National Renewable Fuel Standard Program in the USA (EPA 2010), imposing for example the attainment of minimum GHG savings compared to fossil fuels displaced. The calculation of life cycle GHG emission savings is subject to significant uncertainty, but current biofuel life-cycle studies do not usually consider uncertainty. Most often, life-cycle assessment (LCA) practitioners build deterministic models to approximate real systems and thus fail to capture the uncertainty inherent in LCA (Lloyd and Ries, 2007). This type of approach results in outcomes that may be erroneously interpreted, or worse, may promote decisions in the wrong direction (Lloyd and Ries, 2007; Plevin, 2010). It is, therefore, important for sound decision support that uncertainty is taken into account in the life-cycle modeling of biofuels. Under this context, this chapter has two main goals: i) to present a robust framework to incorporate uncertainty in the life-cycle modeling of biofuel systems; and ii) to describe the application of this framework to vegetable oil fuel in Europe. In addition, results are compared with conventional (fossil) fuels to evaluate potential savings achieved through displacement. Following this approach, both the overall uncertainty and the relative importance of the different types of uncertainty can be assessed. Moreover, the relevance of addressing uncertainty issues in biofuels life-cycle studies instead of using average deterministic approaches can be evaluated, namely through identification of important aspects that deserve further study to reduce the overall uncertainty of the system.


Original document

The different versions of the original document can be found in:

http://dx.doi.org/10.5772/17299
http://cdn.intechweb.org/pdfs/19177.pdf,
https://cdn.intechweb.org/pdfs/19177.pdf,
https://cdn.intechopen.com/pdfs-wm/19177.pdf,
https://academic.microsoft.com/#/detail/1479853443
Back to Top

Document information

Published on 01/01/2011

Volume 2011, 2011
DOI: 10.5772/17299
Licence: Other

Document Score

0

Views 1
Recommendations 0

Share this document

Keywords

claim authorship

Are you one of the authors of this document?