Published in Int. Journal for Numerical Methods in Engineering Vol. 51 (1), pp. 57-83, 2001
doi: 10.1002/nme.147

Abstract

A simple finite element triangle for thin shell analysis is presented. It has only nine translational degrees of freedom and is based on a total Lagrangian formulation. Large strain plasticity is considered using a logarithmic strain–stress pair. A plane stress isotropic behaviour with an additive decomposition of elastic and plastic strains is assumed. A hyperelastic law is considered for the elastic part while for the plastic part a von Mises yield function with non‐linear isotropic hardening is adopted. The element is an extension of a previous similar rotation‐free triangle element based upon an updated Lagrangian formulation with hypoelastic constitutive law. The element termed BST (for basic shell triangle) has been implemented in an explicit (hydro‐) code adequate to simulate sheet‐stamping processes and in an implicit static/dynamic code. Several examples are shown to assess the performance of the present formulation.

E. Oñate, F. Flores, J. Marcipar. Membrane Structures Formed by Low Pressure Inflatable Tubes. New Analysis Methods and Recent Constructions. DOI 10.1007/978-1-4020-6856-0_10

H. Stolarski, A. Gilmanov, F. Sotiropoulos. Nonlinear rotation-free three-node shell finite element formulation. Int. J. Numer. Meth. Engng 95(9) (2013) DOI 10.1002/nme.4517

M. Brunet, F. Sabourin. Analysis of a rotation-free 4-node shell element. Int. J. Numer. Meth. Engng 66(9) DOI 10.1002/nme.1608

P. Woelke, G. Voyiadjis, P. Perzyna. Elasto-plastic finite element analysis of shells with damage due to microvoids. Int. J. Numer. Meth. Engng 68(3) (2006) DOI 10.1002/nme.1711

F. Flores, E. Oñate. A rotation-free shell triangle for the analysis of kinked and branching shells. Int. J. Numer. Meth. Engng 69(7) (2007) DOI 10.1002/nme.1823

E. Oñate, F. Zárate. Extended rotation-free plate and beam elements with shear deformation effects. Int. J. Numer. Meth. Engng DOI 10.1002/nme.2836

Y. Zhou, K. Sze. A geometric nonlinear rotation-free triangle and its application to drape simulation. Int. J. Numer. Meth. Engng 89(4) (2011) DOI 10.1002/nme.3250

J. Mackerle. Finite element linear and nonlinear, static and dynamic analysis of structural elements, an addendum. Engineering Computations 19(5) DOI 10.1108/02644400210435843

E. Oñate, P. Cendoya, J. Miquel. Non‐linear explicit dynamic analysis of shells using the BST rotation‐free triangle. Engineering Computations 19(6) DOI 10.1108/02644400210439119

F. Flores. A Two-Dimensional Linear Assumed Strain Triangular Element for Finite Deformation Analysis. 73(6) (2005) DOI 10.1115/1.2173674

T. Bao Le, A. Gilmanov, F. Sotiropoulos. High Resolution Simulation of Tri-Leaflet Aortic Heart Valve in an Idealized Aorta. 7(3) (2013) DOI 10.1115/1.4024520

E. Oñate, F. Flores, L. Neamtu. Enhanced Rotation-Free Basic Shell Triangle. Applications to Sheet Metal Forming. DOI 10.1007/978-1-4020-6577-4_14

M. Pacheco, D. Celentano, C. García-Herrera, J. Méndez, F. Flores. Numerical simulation and experimental validation of a multi-step deep drawing process. Int J Mater Form 10(1) (2015) DOI 10.1007/s12289-015-1255-6

S. Li, J. Zhang, X. Cui. Nonlinear dynamic analysis of shell structures by the formulation based on a discrete shear gap. Acta Mech 230(10) (2019) DOI 10.1007/s00707-019-02475-y

K. Kabanemi, J. Marcotte. Numerical simulation of suction blow molding process for producing curved ducts. Polym Eng Sci 59(2) (2018) DOI 10.1002/pen.24939

F. Flores, E. Oñate. Applications of a Rotation-Free Triangular Element for Finite Strain Analysis of Thin Shells and Membranes. DOI 10.1007/1-4020-3317-6_5

J. Valdés, E. Oñate. Orthotropic rotation-free basic thin shell triangle. Comput Mech 44(3) (2009) DOI 10.1007/s00466-009-0370-y

F. Zárate, E. Oñate. Extended rotation-free shell triangles with transverse shear deformation effects. Comput Mech 49(4) (2011) DOI 10.1007/s00466-011-0653-y