This paper presents a contribution for the damage assessment of historic masonry churches exposed to slow-moving landslides. In particular, the authors identified four global damage mechanisms, which are presented here by means of the critical damage assessment of four case studies located in the Liguria region (Italy) in areas affected by slow-moving landslides. For each church, a correlation between the damage patterns observed on-site and the ground movements induced by landslide phenomena was sought by means of visual inspections and crack interpretation. As a result, each damage mechanism was associated to a different pattern of ground movements produced by slow-moving landslides.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document


[1] Ferrero, C., Cambiaggi, L., Vecchiattini, R and Calderini, C. Damage assessment of historic masonry churches exposed to slow-moving landslides. Int. J. Archit. Herit. (2020). In press.

[2] da Porto, F., Silva B., Costa C. and C. Modena. Macro-scale analysis of damage to churches after earthquake in Abruzzo (Italy) on April 6, 2009. J. Earthq. Eng. (2019) 16(6): 739-758.

[3] Lagomarsino, S. and Podestà S. Seismic vulnerability of ancient churches. Part 1: damage assessment and emergency planning. Earthq. Spectra (2004a) 20 (2): 377–394.

[4] Doglioni, F., A. Moretti, and V. Petrini. Le chiese e il terremoto. National Research Council, Trieste, IT: Lint Press (1994) (in Italian).

[5] Saloustros S., Pelà L., Roca p. and J. Portal. Numerical analysis of structural damage in thechurch of the Poblet Monastery, Eng. Fail. Anal. (2015) 48: 41–61.

[6] Sánchez A. R., Meli R., and Chávez M. M. Structural monitoring of the Mexico City cathedral (1990-2014), Int. J. Archit. Herit (2016) 10 (2-3): 254-6.

[7] Cooper A. H. The classification, recording, databasing and use of information about building damage due to subsidence and landslides. Q. J. Eng. Geol. Hydrogeol. (2008) 41:3.

[8] Cruden, D.M. and Varnes D.J. 1996. Landslide types and processes. In: Landslides: investigation and mitigation, Transportation Research Board, Special Report 247 (1996), pp. 36-75. Washington, D.C.: National Academy of Sciences.

[9] Cascini L., Fornaro G. and D. Peduto Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas. ISPRS J. Photogramm. Remote Sens (2009) 64: 598-611

[10] ARPA Piemonte (Agenzia Regionale per la Protezione Ambientale). Linee guida all’interpreazione dei dati satellitari PSInsarTM in Piemonte (2008).

[11] Piano di Bacino Stralcio per l’Assetto Idrogeologico, Regione Liguria, 2017. Carte della Suscettività al Dissesto (Landslide Susceptibility Maps). Accessed October 25, 2018. http://www.pianidibacino.ambienteinliguria.it/

[12] Piano Stralcio per l’Assetto Idrogeologico, Autorità di bacino distrettuale del fiume Po, 2017. Atlante dei Rischi Idraulici e Idrogeologici (At.las of Hydraulic and Hydrogeological Risks). Accessed October 25, 2018. http://www.pai.adbpo.it/.

[13] Federici, P.R. and Chelli A. Atlante dei Centri Abitati Instabili della Liguria. IV. Provincia di Imperia. Regione Liguria (2007).

[14] MATTM. Geoportale Nazionale. Accessed February 13, 2020. http://www.pcn.minambiente.it/mattm/visualizzatori/

Back to Top

Document information

Published on 30/11/21
Submitted on 30/11/21

Volume Interdisciplinary projects and case studies, 2021
DOI: 10.23967/sahc.2021.248
Licence: CC BY-NC-SA license

Document Score


Views 10
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?