Topology optimization has emerged in the last years as a promising research fieldwith a wide range of applications. One of the most successful approaches, theSIMP method, is based on regularizing the problem and proposing a penaliza-tion interpolation function. In this work, we propose an alternative interpolationfunction, the SIMP-ALL method that is based on the topological derivative con-cept. First, we show the strong relation in plane linear elasticity between theHashin-Shtrikman (H-S) bounds and the topological derivative, providing anew interpretation of the last one. Then, we show that the SIMP-ALL interpo-lation remains always in between the H-S bounds regardless the materials tobe interpolated. This result allows us to interpret intermediate values as realmicrostructures. Finally, we verify numerically this result and we show the con-venience of the proposed SIMP-ALL interpolation for obtaining auto-penalizedoptimal design in a wider range of cases. A MATLAB code of the SIMP-ALLinterpolation function is also provided

Full Document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2019

DOI: 10.1002/nme.6140
Licence: CC BY-NC-SA license

Document Score


Views 1
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?