Abstract

In order to make machines perceive their external environment coherently, multiple sources of sensory information derived from several different modalities can be used (e.g. cameras, LIDAR, stereo, RGB-D, and radars). All these different sources of information can be efficiently merged to form a robust perception of the environment. Some of the mechanisms that underlie this merging of the sensor information are highlighted in this chapter, showing that depending on the type of information, different combination and integration strategies can be used and that prior knowledge are often required for interpreting the sensory signals efficiently. The notion that perception involves Bayesian inference is an increasingly popular position taken by a considerable number of researchers. Bayesian models have provided insights into many perceptual phenomena, showing that they are a valid approach to deal with real-world uncertainties and for robust classification, including classification in time-dependent problems. This chapter addresses the use of Bayesian networks applied to sensory perception in the following areas: mobile robotics, autonomous driving systems, advanced driver assistance systems, sensor fusion for object detection, and EEG-based mental states classification.

Document type: Part of book or chapter of book

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

http://dx.doi.org/10.5772/intechopen.81111 under the license cc-by
https://research.aston.ac.uk/en/publications/multimodal-bayesian-network-for-artificial-perception,
https://www.scipedia.com/public/Faria_2018a,
http://publications.aston.ac.uk/37794,
https://academic.microsoft.com/#/detail/2914475556 under the license https://creativecommons.org/licenses/by/3.0/legalcode
Back to Top

Document information

Published on 01/01/2019

Volume 2019, 2019
DOI: 10.5772/intechopen.81111
Licence: Other

Document Score

0

Views 0
Recommendations 0

Share this document

Keywords

claim authorship

Are you one of the authors of this document?