In this work, we develop a high-performance numerical framework for the large eddy simulation (LES) of incompressible flows. The spatial discretization of the nonlinear system is carried out using mixed finite element (FE) schemes supplemented with symmetric projection stabilization of the convective term and a penalty term for the divergence constraint. These additional terms introduced at the discrete level have been proved to act as implicit LES models. In order to perform meaningful wall-unresolved simulations, we consider a weak imposition of the boundary conditions using a Nitsche’s-type scheme, where the tangential component penalty term is designed to act as a wall law. Next, segregated Runge–Kutta (SRK) schemes (recently proposed by the authors for laminar flow problems) are applied to the LES simulation of turbulent flows. By the introduction of a penalty term on the trace of the acceleration, these methods exhibit excellent stability properties for both implicit and explicit treatment of the convective terms. SRK schemes are excellent for large-scale simulations, since they reduce the computational cost of the linear system solves by splitting velocity and pressure computations at the time integration level, leading to two uncoupled systems. The pressure system is a Darcy-type problem that can easily be preconditioned using a traditional block-preconditioning scheme that only requires a Poisson solver. At the end, only coercive systems have to be solved, which can be effectively preconditioned by multilevel domain decomposition schemes, which are both optimal and scalable. The framework is applied to the Taylor–Green and turbulent channel flow benchmarks in order to prove the accuracy of the convection-stabilized mixed FEs as LES models and SRK time integrators. The scalability of the preconditioning techniques (in space only) has also been proven for one step of the SRK scheme for the Taylor–Green flow using uniform meshes. Moreover, a turbulent flow around a NACA profile is solved to show the applicability of the proposed algorithms for a realistic problem.