In this paper, we propose a variational multiscale finite‐element approximation for the incompressible Navier–Stokes equations using the Boussinesq approximation to model thermal coupling. The main feature of the formulation in contrast to other stabilized methods is that we consider the subscales as transient. They are solution of a differential equation in time that needs to be integrated. Likewise, we keep the effect of the subscales both in the nonlinear convective terms of the momentum and temperature equations and, if required, in the thermal coupling term of the momentum equation. Apart from presenting the main properties of the formulation, we also discuss some computational aspects such as the linearization strategy or the way to integrate in time the equation for the subscales.

R. Codina, J. González‐Ondina, G. Díaz‐Hernández, J. Principe. Finite element approximation of the modified Boussinesq equations using a stabilized formulation. Int. J. Numer. Meth. Fluids 57(9) DOI 10.1002/fld.1718

J. Principe, R. Codina. A numerical approximation of the thermal coupling of fluids and solids. Int. J. Numer. Meth. Fluids 59(11) DOI 10.1002/fld.1856

E. Hachem, T. Kloczko, H. Digonnet, T. Coupez. Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method. Int. J. Numer. Meth. Fluids 68(1) (2010) DOI 10.1002/fld.2498

O. Guasch, P. Sánchez-Martín, A. Pont, J. Baiges, R. Codina. Residual-based stabilization of the finite element approximation to the acoustic perturbation equations for low Mach number aeroacoustics. Int. J. Numer. Meth. Fluids 82(12) (2016) DOI 10.1002/fld.4243

T. Coupez, H. Digonnet, E. Hachem, P. Laure, L. Silva, R. Valette. Multidomain Finite Element Computations. (2013) DOI 10.1002/9781118557884.ch5

O. GUASCH, R. CODINA. COMPUTATIONAL AEROACOUSTICS OF VISCOUS LOW SPEED FLOWS USING SUBGRID SCALE FINITE ELEMENT METHODS. J. Comp. Acous. 17(03) (2011) DOI 10.1142/s0218396x09003975

R. Codina, J. Principe, S. Badia. Dissipative Structure and Long Term Behavior of a Finite Element Approximation of Incompressible Flows with Numerical Subgrid Scale Modeling. (2011) DOI 10.1007/978-90-481-9809-2_5

Z. Wang, A. Oberai. A mixed large eddy simulation model based on the residual-based variational multiscale formulation. Physics of Fluids 22(7) DOI 10.1063/1.3453710

M. Cervera, M. Chiumenti, R. Codina. Mesh objective modeling of cracks using continuous linear strain and displacement interpolations. Int. J. Numer. Meth. Engng. 87(10) (2011) DOI 10.1002/nme.3148

T. Chacón Rebollo, M. Gómez Mármol, F. Hecht, S. Rubino, I. Sánchez Muñoz. A High-Order Local Projection Stabilization Method for Natural Convection Problems. J Sci Comput 74(2) (2017) DOI 10.1007/s10915-017-0469-9

J. Principe, R. Codina. A stabilized finite element approximation of low speed thermally coupled flows. Int Jnl of Num Meth for HFF 18(7/8) DOI 10.1108/09615530810898980

R. Codina, J. Principe, M. Ávila. Finite element approximation of turbulent thermally coupled incompressible flows with numerical sub‐grid scale modelling. Int Jnl of Num Meth for HFF 20(5) DOI 10.1108/09615531011048213

C. de Saracibar, M. Chiumenti, M. Cervera, N. Dialami, A. Seret. Computational Modeling and Sub-Grid Scale Stabilization of Incompressibility and Convection in the Numerical Simulation of Friction Stir Welding Processes. Arch Computat Methods Eng 21(1) (2014) DOI 10.1007/s11831-014-9094-z

A. Oberai, T. Hughes. A palette of fine-scale eddy viscosity and residual-based models for variational multiscale formulations of turbulence. Comput Mech 57(4) (2016) DOI 10.1007/s00466-015-1242-2