Abstract

This paper illustrates the construction of a new class of iterative solvers for power flow calculations based on the method of Alternating Search Directions. This method is fit to the particular algebraic structure of the power flow problem resulting from the combination of a globally linear set of equations and nonlinear local relations imposed by power conversion devices, such as loads and generators. The choice of the search directions is shown to be crucial for improving the overall robustness of the solver. A noteworthy advantage is that constant search directions yield stationary methods that, in contrast with Newton or Quasi-Newton methods, do not require the evaluation of the Jacobian matrix. Such directions can be elected to enforce the convergence to the high voltage operative solution. The method is explained through an intuitive example illustrating how the proposed generalized formulation is able to include other nonlinear solvers that are classically used for power flow analysis, thus offering a unified view on the topic. Numerical experiments are performed on publicly available benchmarks for large distribution and transmission systems.

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2016

DOI: 10.1016/j.epsr.2016.06.021
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 3
Views 11
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?