Abstract

Purpose Freight vehicle parking facilities at large urban freight traffic generators, such as urban retail malls, are often characterized by a high volume of vehicle arrivals and a poor parking supply infrastructure. Recurrent congestion of freight parking facilities generates environmental (e.g. pollution), economic (e.g. delays in deliveries) and social (e.g. traffic) negative externalities. Solutions aimed at either improving or better managing the existing parking infrastructure rely heavily on data and data-driven models to predict their impact and guide their implementation. In the current work, we provide a quantitative study of the parking supply and freight vehicle drivers’ parking behaviour at urban retail malls. Methods We use as case studies two typical urban retail malls located in Singapore, and collect detailed data on freight vehicles delivering or picking up goods at these malls. Insights from this data collection effort are relayed as data stories. We first describe the parking facility at a mall as a queueing system, where freight vehicles are the agents and their decisions are the parking location choice and the parking duration. Results Using the data collected, we analyse (i) the arrival rates of vehicles at the observed malls, (ii) the empirical distribution of parking durations at the loading bays, (iii) the factors that influence the parking duration, (iv) the empirical distribution of waiting times spent by freight vehicle queueing to access the loading bay, and (v) the driver parking location choices and how this choice is influenced by system congestion. Conclusions This characterisation of freight driver behaviour and parking facility system performance enables one to understand current challenges, and begin to explore the feasibility of freight parking and loading bay management solutions.

Document type: Article

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

https://doaj.org/toc/1867-0717,
https://doaj.org/toc/1866-8887 under the license cc-by
http://link.springer.com/content/pdf/10.1007/s12544-017-0267-3.pdf,
http://dx.doi.org/10.1007/s12544-017-0267-3
https://etrr.springeropen.com/track/pdf/10.1007/s12544-017-0267-3,
https://etrr.springeropen.com/articles/10.1007/s12544-017-0267-3,
https://doaj.org/article/5525014f33c04f9ba032d241b008bdd9,
https://link.springer.com/article/10.1007/s12544-017-0267-3/fulltext.html,
https://academic.microsoft.com/#/detail/2764151790 under the license http://creativecommons.org/licenses/by/4.0
Back to Top

Document information

Published on 01/01/2017

Volume 2017, 2017
DOI: 10.1007/s12544-017-0267-3
Licence: Other

Document Score

0

Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?