Abstract

Complex and real time systems often operate under variable and non-stationary conditions, thus requiring efficient and extensive monitoring and error detection solutions. Amongst the many, we focus on anomaly detection techniques, which require measuring the evolution of the monitored indicators through time to identify anomalies i.e., deviations from the expected operational behavior. In this paper, we investigate the possibility to model the evolution of indicators through time using the random walk model. In particular, we focus on the detection of system anomalies at the application level (software errors), based on the monitoring of indicators at the Operating System level. The approach is based on the experimental evaluation of a large set of heterogeneous indicators, acquired under different operating conditions, both in terms of workload and fault load, on an air traffic management target system. The results of the analysis show that for a large number of cases, the histogram of the first order time differences well approximates a Gaussian distribution, independently of the nature of the indicator and its statistical distribution. Such outcomes suggest that the idea of adopting a Gaussian random walk model for several monitoring indicators has an experimental support and deserves be further investigated on a wider scale, in order to determine its range of applicability and representativeness.


Original document

The different versions of the original document can be found in:

http://rcl.dsi.unifi.it/publication/show/730-5,
https://dblp.uni-trier.de/db/conf/iwmn/iwmn2013.html#BondavalliBCSV13,
https://academic.microsoft.com/#/detail/1988689354
http://dx.doi.org/10.1109/iwmn.2013.6663792
Back to Top

Document information

Published on 01/01/2013

Volume 2013, 2013
DOI: 10.1109/iwmn.2013.6663792
Licence: CC BY-NC-SA license

Document Score

0

Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?