## Resumen

Palabras clave: Energía eólica controlable, costos de incertidumbre, estudios probabilísticos, simulaciones de Monte Carlo

## Abstract

Faced with the problem of wind speed in generation and the difficulty that this entails in the economic future of electric power, mathematical formulations (functions), called uncertainty costs, have been developed. The term is used in a model composed of two parts, an implication of penalization costs for overestimation and the other due to the underestimation of a programmed power. Through analytical mathematics and Monte Carlo simulations, we have found the expected value of the costs of uncertainty, the stability of primary resources through the distribution of probability. However, the results can not be evaluated accurately from an analytical point of view, without taking into account the variability around the average value. In this article we calculate the analytical function of the variance, we understand as a measure of dispersion of the expected values of uncertainty costs for the specific case of wind operators; Likewise, this formulation has been validated through Monte Carlo simulations. The function found is used to observe the dispersion of the data around its expected average value, by applying the standard deviation.

Keywords: Controllable wind energy, uncertainty costs, probabilistic studies, Monte Carlo simulation

## 1. Introducción

Para hacer posible la implementación de (WEG), Arévalo et al. introducen la formulación analítica del valor esperado de los costos de incertidumbre, los cuales determinan costos de penalización por subestimar o sobrestimar la potencia programada, lo que permite al operador incluir estos costos en el valor de operación del generador eólico [1].

## 2. Descripción matemática de los costos de incertidumbre para generación eólica

Como se mencionó, el costo de incertidumbre(UCF) puede tener dos valores, uno donde hay un excedente de potencia que no se despacho y otro en el que hace falta para cumplir con lo programado, a cada uno de estos escenarios se los define como costos por subestimar y costos por sobrestimar, respectivamente.

Siendo ${\textstyle W_{av,i}}$ la potencia disponible y ${\textstyle W_{s,i}}$ la potencia programada se definen los costos por subestimar y sobrestimar de la siguiente manera:

1. Costos por subestimar Existen cuando ${\textstyle W_{s,i} definidos como:

 ${\displaystyle C_{u,i}(W_{s,i},W_{av,i})=c_{u,i}(W_{av,i}-W_{s,i})}$
(1)

siendo ${\textstyle c_{u,i}}$ un coeficiente de penalización por subestimar

2. Costos por sobrestimar Existen cuando ${\textstyle W_{av,i} definidos como:

 ${\displaystyle C_{o,i}(W_{s,i},W_{av,i})=c_{o,i}(W_{s,i}-W_{av,i})}$
(2)

siendo ${\textstyle c_{o,i}}$ un coeficiente de penalización por subestimar.

Finalmente, los costos de incertidumbre corresponden al valor esperado de las funciones de costos de penalización por subestimar y sobrestimar ${\displaystyle E(X)}$, donde ${\displaystyle X}$ son las variables: ${\textstyle W_{av,i}}$ potencia disponible y ${\textstyle W_{s,i}}$ potencia programada, [5], para este caso aplicados a la generación eólica se tiene:

 ${\displaystyle UCF=E\left(C_{u,i}\left(W_{s,i},W_{av,i}\right)\right)+E\left(C_{o,i}\left(W_{s,i},W_{av,i}\right)\right)}$
(3)

donde UCF es la función de costos de incertidumbre. Para cada caso es desarrollada una integral:

 ${\displaystyle E\left[C_{u,i\left(W_{s,i},W_{av,i}\right)}\right]=\int \limits _{W_{s,i}}^{W_{r}}c_{u,i}\left(W_{av,i}-W_{s,i}\right)\cdot f_{W}\left(W{av,i}\right)dW_{w,i}}$
(4)
 ${\displaystyle E\left[C_{o,i\left(W_{s,i},W_{av,i}\right)}\right]=\int \limits _{0}^{W_{s},i}c_{o,i}\left(W_{s,i}-W_{av,i}\right)\cdot f_{W}\left(W{av,i}\right)dW_{w,i}}$
(5)

donde ${\textstyle f_{W}(Ww,i)}$ es la PDF de la potencia WEG del generador i, teniendo en cuenta que la función de probabilidad sigue la distribución de Weibull, se puede relacionar esta distribución con la potencia de salida de un generador eólico en función de su velocidad ${\textstyle v}$, de modo que las condiciones de generación son definidas por:

• ${\textstyle v_{i}}$ Velocidad de arranque (cut in speed): la velocidad del viento para la que el generador comienza a entregar potencia útil.
• ${\textstyle v_{r}}$ Velocidad Nominal (rated speed): la velocidad del viento para la cual se alcanza la potencia nominal del generador.
• ${\textstyle v_{o}}$ Velocidad de desconexión (cut out speed): la velocidad del viento para la que el rotor del generador se detiene por acción de los sistemas de regulación para evitar sufrir daños.
• ${\textstyle W_{r}}$ Potencia nominal.

• ${\textstyle \rho ={\frac {W_{r}}{(v_{r}-v_{i})}}}$
• ${\textstyle \kappa ={\frac {-W_{r}\cdot v_{i}}{(v_{r}-v_{i})}}}$
• ${\textstyle \sigma }$: Factor de forma de la PDF.

Con lo anterior se definen los límites o condiciones en las que se cumplen los costos de penalización por subestimar o sobrestimar de acuerdo a la curva de potencia, [1] y [5] definen estos limites de la siguiente manera:

• Condición A: para ${\textstyle v}$ ${\textstyle \leq }$ ${\textstyle v_{i}}$ o ${\textstyle v}$ ${\textstyle \geq }$ ${\textstyle v_{o}}$

 ${\displaystyle f_{W}\left(W_{w,i}=0\right)=\left(1-exp\left(-\left({\frac {v_{i}}{{\sqrt {2}}\sigma }}\right)^{2}\right)+exp\left(-\left({\frac {v_{o}}{{\sqrt {2}}\sigma }}\right)^{2}\right)\right)}$
(6)
• Condición B: para ${\textstyle v_{i}

 ${\displaystyle f_{W}\left(0
(7)
• Condición C: para ${\textstyle v_{r}}$ ${\textstyle \leq }$ ${\textstyle v

 ${\displaystyle f_{W}\left(W_{w,i}=W_{r}\right)=\left(exp\left(-\left({\frac {v_{r}}{{\sqrt {2}}\sigma }}\right)^{2}\right)-exp\left(-\left({\frac {v_{o}}{{\sqrt {2}}\sigma }}\right)^{2}\right)\right)}$
(8)

Aplicando estas condiciones se obtienen las siguientes funciones de costos de penalización por subestimar y sobrestimar [1]:

 ${\displaystyle E\left[C_{w,u,i}\left(W_{w,s,i},W_{w,i}\right)\right]={\frac {c_{w,u,i}}{2}}\left({\sqrt {2\pi }}\rho \sigma \left(erf\left({\frac {W_{w,s,i}-\kappa }{{\sqrt {2}}\rho \sigma }}\right)-erf\left({\frac {W_{r}-\kappa }{{\sqrt {2}}\rho \sigma }}\right)\right)+2\left(W_{w,s,i}-W_{r}\right)e^{-\left({\frac {W_{r}-\kappa }{{\sqrt {2}}\rho \sigma }}\right)^{2}}\right)}$ ${\displaystyle +{\frac {c_{w,u,i}}{2}}\left(e^{-{\frac {V_{r}^{2}}{2\sigma ^{2}}}}-e^{-{\frac {V_{0}^{2}}{2\sigma ^{2}}}}\right)\left(W_{r}-W_{w,s,i}\right)}$
(9)

 ${\displaystyle E\left[C_{w,o,i}\left(W_{w,s,i},W_{w,i}\right)\right]=c_{w,o,i}W_{w,s,i}\cdot \left(1-e^{-{\frac {V_{i}^{2}}{2\sigma ^{2}}}}+e^{\frac {V_{0}^{2}}{2\sigma ^{2}}}+e^{-{\frac {\kappa ^{2}}{2\rho ^{2}\sigma ^{2}}}}\right)-}$ ${\displaystyle -{\frac {{\sqrt {2\pi }}c_{w,o,i}\rho \sigma }{2}}\left(erf\left({\frac {W_{w,s,i}-\kappa }{{\sqrt {2}}\rho \sigma }}\right)-erf\left({\frac {-\kappa }{{\sqrt {2}}\rho \sigma }}\right)\right)}$
(10)

Este resultado será fundamental para el planteamiento y desarrollo de la varianza. [1,5].

## 3. Formulación de la varianza en los costos de incertidumbre

La varianza es una medida de dispersión definida como la esperanza del cuadrado de la desviación respecto a la media y puede ser definida de la siguiente forma:

 ${\displaystyle Var[X]=E[X^{2}]-E[X]^{2}}$
(11)

Siendo E[X] el valor esperado de una función de distribución de probabilidad X.

Específicamente en este caso, E[X] es una función de costos de penalización por subestimar y sobrestimar; es decir, se tendrán dos resultados de varianza, uno debido a los costos de penalización por subestimar y otro por sobrestimar:

• Varianza por subestimar:
 ${\displaystyle Var\left[C_{w,u,i}\left(W_{w,s,i},W_{w,i}\right)\right]=}$ ${\displaystyle E\left[C_{w,u,i}\left(W_{w,s,i},W_{w,i}\right)^{2}\right]}$ – ${\displaystyle E\left[C_{w,u,i}\left(W_{w,s,i},W_{w,i}\right)\right]^{2}}$
(12)
• Varianza por sobrestimar:
 ${\displaystyle Var\left[C_{w,o,i}\left(W_{w,s,i},W_{w,i}\right)\right]=}$ ${\displaystyle E\left[C_{w,o,i}\left(W_{w,s,i},W_{w,i}\right)^{2}\right]}$ – ${\displaystyle E\left[C_{w,o,i}\left(W_{w,s,i},W_{w,i}\right)\right]^{2}}$
(13)

Para hallar la varianza total se debe tener en cuenta que los costos de penalización por subestimar y sobrestimar son eventos dependientes, como consecuencia se utilizó la siguiente formula:

 ${\displaystyle Var[X\pm Y]=Var[X]+Var[Y]\pm {2}Cov[X,Y]}$
(14)

es decir:

 ${\displaystyle Var\left[C_{w,u,i}\left(W_{w,s,i},W_{w,i}\right)\pm C_{w,o,i}\left(W_{w,s,i},W_{w,i}\right)\right]=}$ ${\displaystyle Var\left[C_{w,u,i}\left(W_{w,s,i},W_{w,i}\right)\right]}$ ${\displaystyle +}$ ${\displaystyle Var\left[C_{w,o,i}\left(W_{w,s,i},W_{w,i}\right)\right]}$ ${\displaystyle \pm }$ ${\displaystyle 2Cov\left[C_{w,u,i}\left(W_{w,s,i},W_{w,i}\right),C_{w,o,i}\left(W_{w,s,i},W_{w,i}\right)\right]}$
(15)

### 3.1 Varianza de costos de penalización por subestimar

Como se puede ver en la ecuación (13) la varianza se puede dividir en dos partes, de la siguiente forma:

 ${\displaystyle Var\left[C_{w,u,i}\left(W_{w,s,i},W_{w,i}\right)\right]=a_{u}-b_{u}}$
(16)

${\textstyle a_{u}}$ se soluciona a partir de metodos de sustitución simple y ${\textstyle b_{u}}$ se puede deducir de (11). El resultado de la varianza por subestimar es el siguiente:

 ${\displaystyle a_{u}=I_{1}+I_{2}}$
 ${\displaystyle I_{1}=c_{w,u,i}^{2}\cdot \left(2\rho ^{2}\sigma ^{2}\left(e^{-\left({\frac {W_{w,s,i}-\kappa }{{\sqrt {2}}\rho \sigma }}\right)^{2}}-e^{-\left({\frac {W_{r}-\kappa }{{\sqrt {2}}\rho \sigma }}\right)^{2}}\right)-\left(W_{r}-W_{w,s,i}\right)^{2}e^{-\left({\frac {W_{r}-\kappa }{{\sqrt {2}}\rho \sigma }}\right)^{2}}\right.}$ ${\displaystyle \left.+{\sqrt {2\pi }}\rho \sigma \left(\kappa -W_{w,s,i}\right)\left(erf\left({\frac {W_{r}-\kappa }{{\sqrt {2}}\rho \sigma }}\right)-erf\left({\frac {W_{w,s,i}-\kappa }{{\sqrt {2}}\rho \sigma }}\right)\right)\right)}$
(17)
 ${\displaystyle I_{2}=c_{w,u,i}^{2}\left(W_{r}-W_{w,s,i}\right)^{2}\cdot \left(e^{-\left({\frac {v_{r}^{2}}{2\sigma ^{2}}}\right)}-e^{-\left({\frac {v_{0}^{2}}{2\sigma ^{2}}}\right)}\right)}$
(18)
 ${\displaystyle b_{u}=\left({\frac {c_{w,u,i}}{2}}\left({\sqrt {2\pi }}\rho \sigma \left(erf\left({\frac {W_{w,s,i}-\kappa }{{\sqrt {2}}\rho \sigma }}\right)-erf\left({\frac {W_{r}-\kappa }{{\sqrt {2}}\rho \sigma }}\right)\right)+2\left(W_{w,s,i}-W_{r}\right)e^{-\left({\frac {W_{r}-\kappa }{{\sqrt {2}}\rho \sigma }}\right)^{2}}\right)\right.}$ ${\displaystyle \left.+{\frac {c_{w,u,i}}{2}}\left(e^{-{\frac {V_{r}^{2}}{2\sigma ^{2}}}}-e^{-{\frac {V_{0}^{2}}{2\sigma ^{2}}}}\right)\left(W_{r}-W_{w,s,i}\right)\right)^{2}}$
(19)

### 3.2 Varianza de costos de penalización por sobrestimar

De forma similar al planteamiento y solución de la varianza de costos de penalización por subestimar, se obtiene:

 ${\displaystyle Var\left[C_{w,o,i}(W_{w,s,i},W_{w,i})\right]=a_{o}-b_{o}}$
(20)

Al igual que en el caso anterior, a partir de sustituciones simples y resultado de (8) es posible encontrar la solución, obteniendo el siguiente resultado:

 ${\displaystyle a_{o}=I_{o1}+I_{o2}}$
 ${\displaystyle I_{o1}=c_{w,o,i}^{2}W_{w,s,i}^{2}\cdot \left(1-e^{-{\frac {v_{i}^{2}}{2\sigma ^{2}}}}+e^{-{\frac {v_{o}^{2}}{2\sigma ^{2}}}}\right)}$
(21)
 ${\displaystyle I_{o2}=c_{w,o,i}^{2}\left(\left(W_{w,s,i}^{2}+2\rho ^{2}\sigma ^{2}+\kappa ^{2}\right)\cdot e^{-\left({\frac {-\kappa }{{\sqrt {2}}\rho \sigma }}\right)^{2}}-\left(2\rho ^{2}\sigma ^{2}\right)\cdot e^{-\left({\frac {W_{w,s,i}-\kappa }{{\sqrt {2}}\rho \sigma }}\right)^{2}}\right)}$ ${\displaystyle +{\sqrt {2\pi }}\rho \sigma \left(\kappa {-}W_{w,s,i}\right)\cdot \left(erf\left({\frac {W_{w,s,i}-\kappa }{{\sqrt {2}}\rho \sigma }}\right)-erf\left({\frac {-\kappa }{{\sqrt {2}}\rho \sigma }}\right)\right)}$
(22)
 ${\displaystyle b_{o}=\left(c_{w,o,i}W_{w,s,i}\cdot \left(1-e^{-{\frac {V_{i}^{2}}{2\sigma ^{2}}}}+e^{-{\frac {V_{0}^{2}}{2\sigma ^{2}}}}+e^{-{\frac {\kappa ^{2}}{2\rho ^{2}\sigma ^{2}}}}\right)-{\frac {{\sqrt {2\pi }}c_{w,o,i}\rho \sigma }{2}}\left(erf\left({\frac {W_{w,s,i}-\kappa }{{\sqrt {2}}\rho \sigma }}\right)-erf\left({\frac {-\kappa }{{\sqrt {2}}\rho \sigma }}\right)\right)\right)^{2}}$
(23)

Para la varianza total de los costos de incertidumbre como ya se mencionó se utilizó la covarianza, la cual es obtenida con la siguiente formula:

 ${\displaystyle Cov[X,Y]=E[XY]-E[X]E[Y]}$
(24)

Por definición [2] los costos de penalización por subestimar ocurren cuando los de sobrestimar no están, solo existe una posibilidad de que se encuentren y es en un solo punto (${\textstyle W_{w,s,i}}$), al desarrollar matemáticamente este punto el resultado es cero; es decir que ${\textstyle E[XY]}$ se puede considerar como la suma de los valores esperados, con esto ya se tienen todos los valores analíticos.

## 4. Validación de la varianza de los costos de incertidumbre mediante simulación

Con el objetivo de validar la fórmula encontrada analíticamente se plantea la simulación de Montecarlo para un generador eólico utilizando los parámetros de la Tabla 1, la simulación consiste en 100000 datos aleatorios de la velocidad del viento teniendo en cuenta la distribución de Weibull adaptada específicamente a la Raylegh, estos datos se encuentran acumulados alrededor del valor del viento nominal dado en la tabla de parámetros, 15 m/s, [6,7].

 Entradas Variable Descripción y Unidad Valor ${\textstyle W_{w,s,i}}$ Potencia programada al generador eólico ${\textstyle i}$ [MW] 100 ${\displaystyle v_{i}}$ Velocidad de inicio de generación [m/s] 5 ${\displaystyle v_{r}}$ Velocidad nominal del viento [m/s] 15 ${\displaystyle v_{o}}$ Velocidad de parada de generador [m/s] 45 ${\displaystyle W_{r}}$ Potencia nominal de salida [MW] 150 ${\displaystyle q}$ Constante lineal [MW/m/s] 15 ${\displaystyle b}$ Constante independiente [MW] -75 ${\displaystyle \sigma }$ Parámetro de escala Raylegh [m/s] 15.9577 ${\displaystyle c_{_{w},u,i}}$ Costo de penalización por sub estimar al generador ${\textstyle i}$ [$/MW] 300 ${\displaystyle c_{_{w},o,i}}$ Costo de penalización por sobre estimar al generador ${\textstyle i}$ [$ /MW] 700 N Número de iteraciones 100000

A continuación, en la Figura 1 se muestra la distribución de los datos, donde se muestra que sigue la función Raylegh, además se muestra la potencia disponible en el generador basado en las condiciones de potencia del generador definidas en (6), (7) y (8).

Luego, en la Figura 2 se presenta la cantidad de escenarios en los cuales se subestima y se sobrestima la potencia programada, como se definió en (1) y (2).

 Figura 2. Histograma costos por subestimar y sobrestimar

Posteriormente, en el histograma de la Figura 3 se muestra la acumulación de escenarios de costos de incertidumbre producto de la suma de los costos por sobreestimar y subestimar. El valor esperado de estos costos que se obtienen en el histograma es de ${\textstyle 2.0879e+04}$, y el valor esperado de los costos de incertidumbre que se obtiene por la formula encontrada analíticamente en (9 y 10) es de ${\textstyle 2.0850e+04}$ obteniendo un error de ${\textstyle 6.9162e-04}$.

 Figura 3. Histograma UCF

En la Figura 4 se observa el cambio de los costos de incertidumbre al cambiar la potencia programada para el mismo generador con las características de la Tabla 1, variando de 0 MW a la potencia nominal del generador 150 MW. Esta gráfica permite encontrar el valor óptimo de potencia que se debe programar para que los UCF sean mínimos.

 Figura 4. UCF al variar la potencia programada

Finalmente se procede a calcular la varianza mediante simulación de Montecarlo al igual que se simulo los UCF, obteniendo (${\textstyle 3.141e+08}$), al compararlo con el valor obtenido analíticamente ${\textstyle 3.0012e+08}$ se obtuvo un error de 0.0043.

Además, se hace el mismo análisis que con los costos de incertidumbre variando la potencia programada [8,9], observando que cuando este tiene una menor varianza significa una menor dispersión para la cantidad de escenarios, como se observa en la Figura 5.

 Figura 5. Varianza al cambiar la Potencia programada

## 5. Conclusiones

Este articulo propone la formulación matemática de la varianza de los costos de incertidumbre, que representa la medida de dispersión de los valores esperados de los UCF para el caso específico de los generadores eólicos. Su importancia radica en que muestra la variabilidad de los costos de incertidumbre al analizar distintos escenarios de la potencia programada, específicamente en sistemas de generación eólicos donde la fuente de energía primaria (velocidad del viento) tiene asociada una gran incertidumbre.

La varianza analítica es exitosamente validada mediante simulaciones de Montecarlo usando variables aleatorias, mostrando el bajo error de los resultados al comparar los resultados simulados con los analíticos.

Se encuentra una aplicación en la optimización despacho, al relacionar tanto (UCF) como varianza de (UCF) con la potencia programada, su importancia radica en que muestra los valores mínimos y máximos de costos de incertidumbre y la variabilidad de este valor esperado, además se incluye para este estudio un análisis de varianza exponiendo el bajo error.

Pensando en el desarrollo y la alta penetración que comienzan a tener las energías renovables, el desarrollo de UFC presenta una gran aplicación en la optimización del despacho económico, pues minimiza riesgos tanto económicos como técnicos por sobrestimar o subestimar la potencia programada. Asimismo, el desarrollo matemático que se muestra de la varianza de UFC, añade un valor de validez y confianza a la optimización del despacho de generadores eólicos(WEG). El riguroso estudio presentado en el texto presenta gran aplicabilidad en los sistemas de potencia, debido a la alta penetración de energías renovables no convencionales, sin embargo su trascendencia radica en su complementariedad con sistemas de almacenamiento o generadores convencionales.

Finalmente el proceso matemático para obtener la varianza de UFC en WEG planteado, sirve como punto de partida para el futuro desarrollo de funciones matemáticas para varianza de UFC de otros sistemas de generación. Estos son sistemas de energías renovables o sistemas presentes en microgrids de generación distribuida, en los cuales ya se desarrollo un valor esperado de los costos de incertidumbre, como son generación fotovoltaica (PVG), vehículos eléctricos conectados a la red (PEV) y pequeñas centrales hidroeléctricas (PCHs) [6,7].

## Acknowledgements

The authors would like to thank the Cyted Network: RED IBEROAMERICANA PARA EL DESARROLLO Y LA INTEGRACION DE PEQUENOS GENERADORES EOLICOS(MICRO-EOLO) for the continued support during thedevelopment of this work.

## Referencias

[1] Arevalo, J. C., Santos, F., Rivera S. R. Uncertainty cost functions for solar photovoltaic generation, wind energy generation, and plug-in electric vehicles: mathematical expected value and verification by Monte Carlo simulation. International Journal of Power and Energy Conversion, 10(2):171-207, 2019.

[2] Hetzer, J., Yu, D. C., Bhattarai K. An Economic dispatch model incorporating wind power. IEEE Transactions on Industrial Informatics, Volume 23:101-110, 2008.

[3] Zhao, J., Fushuan, W., Zhao, Y., Yusheng, X., Kit P. W. (2012) Optimal dispatch of electric vehicles and wind power using enhanced particle swarm optimization. IEEE Transactions on Industrial Informatics, 8:263-275, 2012.

[4] Haddi, S., Tarek, B. Economic/emission dispatch including wind power using ABC-Weighted-Sum. International Journal of Engineering and Technical Research (IJETR), 3:891-896, 2015.

[5] Arevalo, J. C., Santos, F., Rivera S. R. Application of analytical uncertainty costs of solar, wind and electric vehicles in optimal power dispatch. Revista Ingeniería, 22:324-346, 2017.

[6] Molina, F. S., Perez, S. J., Rivera S. R. Uncertainty cost function formulation in small hydropower plants inside microgrid. Ingenierías USBMed, 8:41-49, 2017.

[7] Yao, Y., Wenzhong, G., James Momoh. Economic dispatch for microgrid containing electric vehicles via probabilistic modeling. National Renewable Energy Laboratory (NREL), 3:21-28, 2015.

[8] Peña A., Romero D., Rivera S. Generation and demand scheduling in a micro-grid with battery-based storage systems, hybrid renewable systems and electric vehicle aggregators. WSEAS Transaction on Power Systems, 14(2):8-23, 2019.

[9] Ñustes W., Rivera S. Colombia: territorio de inversión en fuentes no convencionales de energía renovable para la generación eléctrica. Revista Ingeniería, Investigación y Desarrollo, 17:37-48, 2017.

### Document information

Published on 16/09/19
Accepted on 11/09/19
Submitted on 18/01/19

Volume 35, Issue 3, 2019
DOI: 10.23967/j.rimni.2019.09.003