A finite deformation hyper-elastic membrane theory based on inter-atomic potentials for crystalline films composed of a single atomic layer is developed. For this purpose, an extension of the standard Born rule that exploits the differential geometry concept of the exponential map is proposed to deal with the curvature of surfaces. The exponential map is approximated locally and strain measures based on the stretch and the curvature of the membrane arise. The methodology is first particularized to atomic chains in two dimensions, and then to graphene sheets. A reduced model for the transverse mechanics of carbon nanotubes is developed in detail. This model is a hyper-elastic constrained membrane which fully exploits the symmetry of the transverse deformation. Additionally, a continuum version of the non-bonded interactions is provided. The continuum model is discretized using finite elements and very good agreement with molecular mechanics simulations is obtained. Finally, several simulations illustrate the strong effect of the van der Waals interactions in the transverse deformation of carbon nanotubes.

S. Wang, J. Sun, J. Ning. Numerical simulation of ductile shear localization: Plastic-flow network and slip-line field. Int. J. Numer. Anal. Meth. Geomech. 32(3) (2008) DOI 10.1002/nag.633

I. Mladenov, P. Djondjorov, M. Hadzhilazova, V. Vassilev. Equilibrium Configurations of Lipid Bilayer Membranes and Carbon Nanostructures. Commun. Theor. Phys. 59(2) (2013) DOI 10.1088/0253-6102/59/2/14

W. Yang, S. Xiao. The Applications of Meshfree Particle Methods at the Nanoscale. DOI 10.1007/11428862_40

S. XIAO, W. YANG. A NANOSCALE MESHFREE PARTICLE METHOD WITH THE IMPLEMENTATION OF THE QUASICONTINUUM METHOD. Int. J. Comput. Methods 02(03) (2011) DOI 10.1142/s0219876205000533

M. Wang, X. Zhang, M. Lu. Nonlinear membrane-spring model for carbon nanotubes. Phys. Rev. B 72(20) (2005) DOI 10.1103/physrevb.72.205403

S. Zhang, R. Khare, T. Belytschko, K. Hsia, S. Mielke, G. Schatz. Transition states and minimum energy pathways for the collapse of carbon nanotubes. Phys. Rev. B 73(7) (2006) DOI 10.1103/physrevb.73.075423

W. Sommanawat, W. Kanok-Nukulchai. Multiscale simulation based on kriging based finite element method. Interaction and multiscale mechanics 2(4) DOI 10.12989/imm.2009.2.4.353

N. Liu, Y. Wang, M. Li, J. Jia. Nonlinear buckling analyses of a small-radius carbon nanotube. Journal of Applied Physics 115(15) DOI 10.1063/1.4870859

C. Daraio, V. Nesterenko, S. Jin. Highly nonlinear contact interaction and dynamic energy dissipation by forest of carbon nanotubes. Appl. Phys. Lett. 85(23) DOI 10.1063/1.1829778

C. Daraio, V. Nesterenko, S. Jin, W. Wang, A. Rao. Impact response by a foamlike forest of coiled carbon nanotubes. Journal of Applied Physics 100(6) DOI 10.1063/1.2345609

D. Qian, Z. Zhou, Q. Zheng. Coarse-grained modeling and simulation of graphene sheets based on a discrete hyperelastic approach. Int. J. Numer. Meth. Engng 102(3-4) (2015) DOI 10.1002/nme.4872

S. Xiao, W. Yang. A temperature-related homogenization technique and its implementation in the meshfree particle method for nanoscale simulations. Int. J. Numer. Meth. Engng 69(10) (2007) DOI 10.1002/nme.1841

S. Zhang, R. Khare, Q. Lu, T. Belytschko. A bridging domain and strain computation method for coupled atomistic–continuum modelling of solids. Int. J. Numer. Meth. Engng 70(8) (2007) DOI 10.1002/nme.1895

M. Leamy, C. Lee. Dynamic response of intrinsic continua for use in biological and molecular modeling: Explicit finite element formulation. Int. J. Numer. Meth. Engng 80(9) DOI 10.1002/nme.2650

J. Mackerle. Bibliography (1994–2004) of nanomaterials/nanostructures and their properties. Modelling Simul. Mater. Sci. Eng. 13(1) (2004) DOI 10.1088/0965-0393/13/1/081

C. Davini. Homogenization of a graphene sheet. Continuum Mech. Thermodyn. 26(1) (2013) DOI 10.1007/s00161-013-0292-y

S. Xiao, R. Hu, Z. Li, S. Attarian, K. Björk, A. Lendasse. A machine-learning-enhanced hierarchical multiscale method for bridging from molecular dynamics to continua. Neural Comput & Applic (2019) DOI 10.1007/s00521-019-04480-7

B. Annin, S. Korobeynikov, A. Babichev. Computer simulation of a twisted nanotube buckling. J. Appl. Ind. Math. 3(3) (2009) DOI 10.1134/s1990478909030028

X. Blanc, C. Le Bris, P. Lions. Atomistic to Continuum limits for computational materials science. ESAIM: M2AN 41(2) (2007) DOI 10.1051/m2an:2007018

G. Szefer, D. Jasińska. Modeling of strains and stresses of material nanostructures. 57(1) DOI 10.2478/v10175-010-0103-6

M. Yu. Fundamental Mechanical Properties of Carbon Nanotubes: Current Understanding and the Related Experimental Studies. 126(3) (2004) DOI 10.1115/1.1755245

A. Cherkasova, J. Shan. Particle Aspect-Ratio and Agglomeration-State Effects on the Effective Thermal Conductivity of Aqueous Suspensions of Multiwalled Carbon Nanotubes. 132(8) (2010) DOI 10.1115/1.4001364

J. VYCHYTIL, M. HOLEČEK. GRID CONTINUUM DESCRIPTION: A NOVEL APPROACH IN TWO-SCALE HYPERELASTICITY. J. Multiscale Modelling 04(01) (2012) DOI 10.1142/s1756973712500047

M. Ghaffari, Y. Gong, S. Attarian, S. Xiao. Peridynamics with Corrected Boundary Conditions and Its Implementation in Multiscale Modeling of Rolling Contact Fatigue. J. Multiscale Modelling 10(01) (2019) DOI 10.1142/s1756973718410032

M. Arroyo, T. Belytschko. Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Phys. Rev. B 69(11) (2004) DOI 10.1103/physrevb.69.115415

B. Annin, V. Alekhin, A. Babichev, S. Korobeynikov. Computer simulation of nanotube contact. Mech. Solids 45(3) (2010) DOI 10.3103/s0025654410030064

B. Annin, V. Alekhin, A. Babichev, S. Korobeynikov. Molecular mechanics method applied to problems of stability and natural vibrations of single-layer carbon nanotubes. Mech. Solids 47(5) (2012) DOI 10.3103/s0025654412050081

S. Hollerer, C. Celigoj. Buckling analysis of carbon nanotubes by a mixed atomistic and continuum model. Comput Mech 51(5) (2012) DOI 10.1007/s00466-012-0757-z

X. Huang, W. Liang, S. Zhang. Radial Corrugations of Multi-Walled Carbon Nanotubes Driven by Inter-Wall Nonbonding Interactions. Nanoscale Res Lett (2010) DOI 10.1007/s11671-010-9801-0