Abstract

Three-dimensional numerical simulation of Taylor gas bubbles as primary unites of slug flow patterns rising in non-Newtonian environments is performed in the context of Direct Numerical Simulation (DNS) of the governing equations, where the whole physics of fluid motions will be taken into account. State-of-the-art numerical tools are proposed to tackle the numerical challenges in the DNS study of this problem. E.g. a coupled level-set volume-of-fluid (CLSVOF) interface capturing method is used to solve the topological changes of the interface. Physical formulations are integrated with moving-mesh (MM) technique to decrease the computational cost of 3D simulations and adaptivemesh-refinement (AMR) technique to increase the local accuracy around the interface. The governing equations are solved using High-Performance Computing (HPC) parallel approaches. To the best of the authors' knowledge, this is the first work dealing with three-dimensional direct numerical simulation of Taylor bubbles rising in non-Newtonian environments.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 11/03/21
Submitted on 11/03/21

Volume 600 - Fluid Dynamics and Transport Phenomena, 2021
DOI: 10.23967/wccm-eccomas.2020.343
Licence: CC BY-NC-SA license

Document Score

0

Views 11
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?