Abstract

The present work deals with the development of an innovative approach to the weight estimation in the conceptual design of a Hybrid-Electric-Powered (HEP) Blended Wing Body (BWB) commercial aircraft. In the last few decades, the improvement of the environmental impact of civil aviation has been the major concern of the aeronautical engineering community, in order to guarantee the sustainable development of the system in presence of a constantly growing market demand. The sustained effort in the improvement of the overall efficiency of conventional aircraft has produced a new generation of vehicles with an extremely low level of emissions and noise, capable of covering the community requirements in the short term. Unfortunately, the remarkable improvements achieved represent the asymptotic limit reachable through the incremental enhancement of existing concepts. Any further improvement to conform to the strict future environmental target will be possible only through the introduction of breakthrough concepts. The aeronautical engineering community is thus concentrating the research on unconventional airframes, innovative low-noise technologies, and alternative propulsion systems. The BWB is one of the most promising layouts in terms of noise emissions and chemical pollution. The further reduction of fuel consumption that can be achieved with gas/electric hybridisation of the power-plant is herein addressed in the context of multidisciplinary analyses. In particular, the payload and range limits are assessed in relation to the technological development of the electric components of the propulsion system. The present work explores the potentialities of an energy-based approach for the initial sizing of a HEP unconventional aircraft in the early conceptual phase of the design. A detailed parametric analysis has been carried out to emphasise how payload, range, and degree of hybridisation are strictly connected in terms of feasible mission requirements and related to the reasonable expectations of development of electric components suitable for aeronautical applications.

Document type: Article

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

http://downloads.hindawi.com/journals/jat/2018/6320197.xml,
http://dx.doi.org/10.1155/2018/6320197 under the license http://creativecommons.org/licenses/by/4.0/
https://doaj.org/toc/0197-6729,
https://doaj.org/toc/2042-3195 under the license http://creativecommons.org/licenses/by/4.0/
http://downloads.hindawi.com/journals/jat/2018/6320197.pdf,
https://iris.uniroma3.it/handle/11590/341335,
https://academic.microsoft.com/#/detail/2896151495
Back to Top

Document information

Published on 01/01/2018

Volume 2018, 2018
DOI: 10.1155/2018/6320197
Licence: Other

Document Score

0

Views 3
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?