We conduct a Global Sensitivity Analysis (GSA) of urban-scale network performances to parameters representing a wide range of realistic dynamic loadings, decomposed in a choice of OD matrix, routing alternatives, and paths flow distribution. A special attention is given to the route alternatives generation, where overlapping metrics and selection methods are introduced to reproduce a wide variety of paths sets configuration. Paths flow distributions are calculated based on different equilibrium criteria. Several sets of simulations are conducted and analyzed graphically and then with a variance-based GSA method so as to get insights on how much and in which conditions each network loading parameter influences network performances by itself or by interaction. Results notably reveal that the demand level is the most decisive parameter since low values simply lead to free-flow conditions with no influence of the other parameters, whereas higher values lead to a wide diversity of network states going from close to capacity but stable to gridlocked. While a nonnegligible amount of this disparity is explained by the demand pattern parameter, the number of paths per OD, their overlapping, and the equilibrium criterion of the paths flow distribution are still influential enough to maintain the network close to its optimal capacity or to prevent the network from fast collapse (gridlock). The highlighted connection between spatial and temporal heterogeneities of the network states explains the gridlocking phenomena. These extracted insights are very encouraging for operational implementations.

Document type: Article

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

http://dx.doi.org/10.1155/2018/8414069 under the license http://creativecommons.org/licenses/by/4.0
https://doaj.org/toc/2042-3195 under the license http://creativecommons.org/licenses/by/4.0/
Back to Top

Document information

Published on 01/01/2018

Volume 2018, 2018
DOI: 10.1155/2018/8414069
Licence: Other

Document Score


Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?