Abstract

This study aims to develop an optimal signal control algorithm for signalized intersections using individual vehicle’s trajectory data under the vehicle-to-infrastructure (V2I) communication environment. The optimal signal control algorithm developed in this study consists of three modules, namely, a phase group length computation module, a split distribution module, and a phase sequence assignment module. A set of analyses using a microscopic simulation model, VISSIM, was conducted for evaluating the effectiveness of the V2I-based optimal signal control algorithm proposed in this study. The analysis results show that the performance of the V2I-based optimal signal control algorithm is superior to the actuated as well as the fixed signal control methods in an isolated intersection and a 2X3 signalized intersection network. In addition, this study investigated the minimum market penetration rate of V2I equipped vehicles for which the V2I-based optimal signal control algorithm is applicable.

Document type: Article

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

http://downloads.hindawi.com/journals/jat/2019/6039741.xml,
http://dx.doi.org/10.1155/2019/6039741 under the license cc-by
https://doaj.org/toc/0197-6729,
https://doaj.org/toc/2042-3195 under the license http://creativecommons.org/licenses/by/4.0/
http://downloads.hindawi.com/journals/jat/2019/6039741.pdf,
https://academic.microsoft.com/#/detail/2911991143
Back to Top

Document information

Published on 01/01/2019

Volume 2019, 2019
DOI: 10.1155/2019/6039741
Licence: Other

Document Score

0

Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?