COMPLAS 2021 is the 16th conference of the COMPLAS Series.
The COMPLAS conferences started in 1987 and since then have become established events in the field of computational plasticity and related topics. The first fifteen conferences in the COMPLAS series were all held in the city of Barcelona (Spain) and were very successful from the scientific, engineering and social points of view. We intend to make the 16th edition of the conferenceanother successful edition of the COMPLAS meetings.
The objectives of COMPLAS 2021 are to address both the theoretical bases for the solution of nonlinear solid mechanics problems, involving plasticity and other material nonlinearities, and the numerical algorithms necessary for efficient and robust computer implementation. COMPLAS 2021 aims to act as a forum for practitioners in the nonlinear structural mechanics field to discuss recent advances and identify future research directions.
Scope
COMPLAS 2021 is the 16th conference of the COMPLAS Series.
Foamed cement paste has been increasingly used as backfill material in roadways and railway embankments due to its advantages of adjustable density and strength. The embankments constructed by foamed cement paste in coastal regions is subjected to both traffic loading and chemical erosion in service life. This paper conducted a series of durability tests to investigate the reduction of static and dynamic strength of foamed cement paste after the specimens were immersed in sodium sulfate solutions.The specimens were prepared with densities of 800 and 900 kg/m3. The influence factors of specimen density, concentration and cation type of sulfate solution on the strength degradation of the specimens were discussed. The results showed that the corrosion resistant coefficient of the specimens was reduced with the increase of immersion time and concentration of sodium sulfate solution. The degradation of the compressive strength under cyclic loading is more serious than that under static loading. The high density specimens perform better durability than low-density specimens, as the specimens with 900 kg/m3 under 28 and 56 days of sulfate attack had smaller reduction in both dynamic and static strengths than the specimens with 800 kg/m3.
Abstract Foamed cement paste has been increasingly used as backfill material in roadways and railway embankments due to its advantages of adjustable density and strength. The embankments [...]
H. Lian, H. Wei, C. Zhendong, C. Rong, W. Jiangang, C. Baochun
DBMC 2023.
Abstract
Ultra-high performance concrete (UHPC) is an innovative cement-based composite material characterized by extremely high durability and mechanical properties, which provides a potential possibility of using non-desalted sea-sand as aggregate. However, the long-term steel corrosion behavior in UHPC prepared by simulated sea-sand under different immersion environments remains unclear. In this study, the pore structure of sea-sand UHPC matrix was measured using nitrogen adsorption/desorption method. The corrosion behavior of rebar in sea-sand UHPC with different endogenous chloride ion contents soaking in pure water and NaCl solution was characterized by electrochemical workstation. The experimental results show that the initial UHPC pore structure is refined by incorporation ofsea-sand, and is similar to that of ordinary UHPC at the later hydration. Regardless of the endogenous chloride ion content and immersion environment, the corrosion rate evaluated by corrosion current density (icorr) and polarization resistance (Rp) of reinforcement in UHPC is extremely low. The measurement of EIS shows that UHPC group has higher matrix resistance (Rc) and charge transfer resistance (Rct), while lower electric double layer capacitance (CPEdl) of reinforcement, which indicates that the steel in UHPC made of sea-sand is still in a state ofpassivation. However, the steel bar in comparison specimen OPC soaking in NaCl solution is in the corrosion stage. Furthermore, sea-sand UHPC possesses of excellent ability of anti- pitting corrosion ofreinforcement after 180 days ofimmersion in NaCl solution.
Abstract Ultra-high performance concrete (UHPC) is an innovative cement-based composite material characterized by extremely high durability and mechanical properties, which provides [...]
Concrete is cured under different conditions to preserve the moist state of the concrete matrix for continuous hydration as it is done on most construction sites. In this study, the effect of different curing techniques on the carbonation depth of concrete mix is presented. Concrete matrix of mix ratio 1 :2 :4 with a water-cement ratio of 0.5 was prepared and cast into cubes of sizes 150 mm. After 24 hours, the concrete cubes were removed from moulds and cured using different techniques for 3, 7, 28, 56, and 91 days. Thereafter, the compressive strength of the concrete cubes and carbonation depths were determined for each curing day. The curing techniques investigated were immersion in water (IM), sprinkling (SP), polyethylene membrane (PM), damp sand (DS), indoor (OI), outdoor (OT), and saturated wet covering (SWC). The results indicated that carbonation depth differed with each of the concrete cured in different techniques. It was observed that concrete exposed outside was worst affected by carbonation followed by those cured indoor, while those cured with polythene showed the least carbonation depth. It was concluded that the polythene membrane curing technique was the best curing technique to limit the effect of carbonation of concrete.
Abstract Concrete is cured under different conditions to preserve the moist state of the concrete matrix for continuous hydration as it is done on most construction sites. In this [...]
Benefiting from the negative carbon footprint of wood, wood composites have been considered as eco-friendly alternative building materials. However, adhesives for bonding wood components are mainly formaldehyde-based resins, which are highly combustible and continuously release volatile hazardous substances during service. Therefore, the development of magnesium oxychloride cement (MOC) as wood adhesive is highly compliant with environmental regulations and green material requirements. Unfortunately, the extensive application of MOC adhesive is hindered by poor water resistance and weak interfacial interaction with wood. Herein, an oyster-inspired organic-inorganic hybrid strategy was proposed to develop MOC with high adhesion strength and excellent water resistance. Specifically, the renewable chitosan (CS) and tartaric acid (TA) were selected as organic reinforcing constituents to construct a dense double chelating network in MOC, which induced the structural regulation at the bonding interface, thus enhancing the cohesion strength and interfacial properties. Thanks to the biomimetic organic-inorganic hybrid structure, the dry and wet shear strength of the MOC-CS-TA reached 3.08 MPa and 1.77 MPa, making increases of 27.27% and 53.91% compared to the control sample, respectively. Meanwhile, the MOC-CS-TA adhesive presented excellent flame-retardant properties compared with urea-formaldehyde resin adhesives and soy protein adhesives. The design path presented here provides workable guidance for the preparation of eco-friendly cementitious materials and green wood composites in further applications.
Abstract Benefiting from the negative carbon footprint of wood, wood composites have been considered as eco-friendly alternative building materials. However, adhesives for bonding [...]
Incorporation of recycled concrete aggregates (RA) produced from construction and demolition wastes in concrete contributes to the sustainability from two perspectives: reducing environmental pollution and reserving natural resources by reducing the consumption of natural aggregates (NA). However, comparing to NA, RA has lower mechanical properties and higher water absorptivity due to the old mortar attached on RA surface, resulting in weakened interfacial transition zones (ITZs) in the concrete and the consequent reduced durability of concrete when RA was used to replace NA for producing recycled aggregates concrete (RAC). Therefore, extensive research work had been devoted to the enhancement of RAC performance and nanomaterials have demonstrated great potential in this regard. This paper reviews recent progress on the application of various nanomaterials for improving the microstructure as well as nano/mechanical properties of ITZs in RAC, and special attentions were given to the dispersion strategies for nanomaterials which determines the amount of nanomaterials required to achieve reliable improvement in RAC performance and thus the cost of using nanomaterials in RAC.
Abstract Incorporation of recycled concrete aggregates (RA) produced from construction and demolition wastes in concrete contributes to the sustainability from two perspectives: reducing [...]
The unmodified recycled cement (RC) paste has unfavorable properties (like fast setting, high water demand and low strength) restricting application. This paper intends to rectify these shortcomings and improve RC with different additives. A comprehensive experimental program combining flowability, setting time, isothermal calorimetry and mechanical tests of modified recycled cement (M-RC) paste with different proportions were conducted. The results indicate that adding TEA and pectin could significantly improve the early flowability of RC and delay its setting, but it will have adverse effects on the mechanical properties of RC paste. Adding 0.5% TEA or 0.075% pectin can increase the fluidity by 240% and 293%. For the 0.5% TEA and 0.075% pectin groups, the 3-day compressive strengths were reduced by 44.3% and 49.5%, respectively.
Abstract The unmodified recycled cement (RC) paste has unfavorable properties (like fast setting, high water demand and low strength) restricting application. This paper intends to [...]
K. Didulica, A. Pranjić, M. Štefančić, B. Mrduljaš, A. Baričević
DBMC 2023.
Abstract
The amount of water is essential to explain the shrinkage process. It is determined by the water-cement ratio, but also by the moisture content. Water in hydrated cement paste occurs in various forms: chemically bound, interlayer, adsorbed, free water and water vapor. During cement hydration, the balance between various forms of water changes. For example, the amount of physically bound water diminishes, and the moisture content changes at similar environmental conditions. Moisture changes occur first in the larger pores and then in the smaller pores. The air pores are larger than the hydration pores (capillary pores, gel pores) and have a greater effect on strength and permeability properties, while the cement hydration pores have a greater effect on shrinkage. At early ages, when composite properties are not fully developed, higher shrinkage influences the development and propagation of cracks. These (micro)cracks represent weak points and affect durability. To reduce shrinkage and bridge the cracks, fibers are added to the cementitious composite. Depending on the type and geometry, the fibers can reduce shrinkage and bridge the cracks. To reduce the environmental impact of fiber production, the use of waste fibers in cementitious composites is proposed. The main objective of this study was to investigate the influence of alkali-resistant glass fibers from production waste on the development of the microstructure of cementitious composites, i.e., the influence on the total porosity. The pore content was determined on fresh cementitious composites after mixing, while the total porosity of the material was measured after 28 days using a mercury intrusion porosimeter. Results were complemented by X-ray computed microtomography (micro-CT). The influence of production waste fibers is presented as a function of length and fiber content. In addition to the reference mixture, results were also compared with mixtures containing factory-produced fibers.
Abstract The amount of water is essential to explain the shrinkage process. It is determined by the water-cement ratio, but also by the moisture content. Water in hydrated cement paste [...]
The current mode plays an important role in the Electrochemical Chloride Extraction (ECE) treatment for concrete. In this study, the experiments were conducted to investigate how the ECE process would be affected by different current modes (continuous and intermittent current modes). The results showed that there were remaining amounts of chloride ions that were hard to be removed by both current modes. Additionally, the porosity under the two current modes showed the same upward trend compared to the initial value, and the chloride diffusion coefficient increased by 1 - 2 times. Also, the chloride-contaminated concrete subjected to the continuous current mode had a higher cumulative chloride extraction content than that subjected to the intermittent mode. The intermittent current mode could not increase the effectiveness of extracting chloride when the current density was not greater than 3 A/m2 and the on-off ratio was not less than 3.2.
Abstract The current mode plays an important role in the Electrochemical Chloride Extraction (ECE) treatment for concrete. In this study, the experiments were conducted to investigate [...]
Red mud (RM) is a hazardous by-product of alumina refining processes. Due to its high alkalinity, large specific surface area, and complex and variable composition, RM is hard to treat or utilize on a large scale. To date, more than 4 billion tons of RM have been stockpiled globally and is still growing by more than 120 million tons annually. Many investigations have focused on the largescale utilization of RM as a construction material, either in its virgin form or after heat treatment. However, the huge differences among the chemical/mineralogical compositions of RMs due to differences among bauxite ores from different sources and/or different refining processes, it is difficult to prescribe a unique process for activating RM cementitious/pozzolanic properties. The present study aims to identify the key chemical and process-dependent factors that influence the cementitious/pozzolanic properties of RM. Two types of RM from different sources are investigated to determine the effects of the chemical/mineralogical composition, the alumina refining process, and calcination on the mineralogical phases and compressive strength of mortar cubes made with ordinary Portland cement (OPC)- RM blended cement. Mortar made with 15 wt.% OPC replaced by one type of virgin RM produced by the Bayer’s process was found to have better strength than a control mortar made with 15% OPC replaced by sand, which indicates that this RM had cementitious/pozzolanic property without requiring heat treatment. On the other hand, the RM produced by the bauxite calcination method needed heat treatment to improve its pozzolanicity, but, despite the improvement, mortar made with its optimally treated form had lower 91-day compressive strength than the companion control mortar made with extra sand as RM replacement. The compressive strength of mortars made with calcined RM was not only affected by the phase changes of the virgin RM properties brought about by calcination but also by changes to its physical.
Abstract Red mud (RM) is a hazardous by-product of alumina refining processes. Due to its high alkalinity, large specific surface area, and complex and variable composition, RM is [...]
Extrusion molding enables automatic construction through the pattern of material addition. The unique molding would result in several features that are different from those in conventional framework molding, such as weak interlayer bonding and a laminar structure with high anisotropy. To strengthen the interlayer bonding, reinforcement is often implanted to penetrate through the extrusion molded filaments (EMF). However, different from the pre-implantation of reinforcement before concrete casting, the post-implantation of reinforcement in EMF may trigger the problems concerning the interface bonding between reinforcement and material matrix. In this work, saddle stitches, a type of Ushape rebar or fiber, are taken as an example to demonstrate the effect of the post-implantation of reinforcement on the interfacial structure between the rebar and EMF matrix. X-ray computed tomography (XCT) is employed to non-destructively probe the post-implanted saddle stitches as well as the surrounded EMF materials. Regions of interest (ROI) are set on the rebar-matrix interfaces to elaborately analyze the material or defect distributions around the saddle stitches. Results demonstrate that insufficient material filling is observed at the outboard of the U-shape rebar, while material pressing is shown at the inboard. Large defects unevenly form in the rebar-matrix interface. Mechanisms of the observations may be ascribed to the low flowability of EMF materials that can hardly migrate to the rebar-matrix interfacial gaps spontaneously. The findings would deepen the understandings in rebar-matrix interfacial structure of EMF with post-implantation of reinforcement.
Abstract Extrusion molding enables automatic construction through the pattern of material addition. The unique molding would result in several features that are different from those [...]