m (Move page script moved page Miah Lienhart 1970a to Miah Lienhart 2022a)
 
(2 intermediate revisions by one other user not shown)
Line 6: Line 6:
 
== Abstract ==
 
== Abstract ==
 
<pdf>Media:Draft_Sanchez Pinedo_1491256721809_abstract.pdf</pdf>
 
<pdf>Media:Draft_Sanchez Pinedo_1491256721809_abstract.pdf</pdf>
 +
 +
== Full Paper ==
 +
<pdf>Media:Draft_Sanchez Pinedo_1491256721809_paper.pdf</pdf>

Latest revision as of 17:06, 25 November 2022

Summary

The uncertainties of parameters quantification due to various known and unknown conditions are crucial to understand structural health monitoring (SHM) systems. For instance, the amplitudes and the variation of loading conditions play a vital rule how the structural parameters are going to be changed. Hence, the aforementioned issue leads to an additional challenge in the area of SHM that requires attention. This study observed the behaviour of a steel bridge experimentally by employing multi-sensors scenarios e.g. accelerometers and laser triangulation sensor. The dynamical properties such as the peak (e.g. maximum-minimum) accelerations and displacements are evaluated. Additionally, the frequencies and damping ratio from the measured data of the tested bridge has been estimated by utilizing the fast Fourier transform (FFT) estimation. The outcome shows that the variation of input excitations (i.e., random, free-decay, extra-loading) effects the investigated properties as well as on their magnitudes considerably. Therefore, the findings suggest that before making a final judgement based on the identified/estimated properties from measured data, the underlying uncertainties need to be considered to avoid sub-optimal assessment strategy.

Abstract

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Full Paper

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22

Volume Computational Solid Mechanics, 2022
DOI: 10.23967/eccomas.2022.280
Licence: CC BY-NC-SA license

Document Score

0

Views 11
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?