(Created page with "==1 Title, abstract and keywords== Your paper should start with a concise and informative title. Titles are often used in information-retrieval systems. Avoid abbreviations a...")
 
 
(21 intermediate revisions by 3 users not shown)
Line 1: Line 1:
==1 Title, abstract and keywords==
+
== Abstract ==
 +
The macroscale mechanical behaviour of crystalline materials, such as polycrystalline metals and single crystal semiconductors, is dictated by the anisotropic behaviour of individual crystals/grains and their interactions with neighboring crystals or other materials. Furthermore, the elastic-plastic response of individual crystals is associated with the underlying atomic lattice structure and phenomena of dislocation glide on the slip systems and dislocation multiplication and interactions. As a result, microstructural characteristics such as grain size, shape, and orientation, have a significant effect on the macroscale mechanical properties and performance. Moreover, these microstructural features are strongly affected by the thermal-mechanical process used to create a part. Because of this, tremendous effort has been made to develop crystal plasticity models that explicitly model the crystal (grain) scale behavior to predict the local macroscale response.
  
Your paper should start with a concise and informative title. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible. Capitalize the first word of the title.
+
In this talk, a framework for computational modelling of discretized single or polycrystal grain structures subjected to thermal-mechanical loading conditions is presented. The model is general for finite deformations with the crystal plasticity model based on dislocation motion and interactions. A parallel finite element implementation is briefly described. Then, applications including predicting microstructure evolution during large deformation processing, fatigue crack initiation, and defect formation during single crystal AlN crystal growth will be presented
  
Provide a maximum of 6 keywords, and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field should be used. These keywords will be used for indexing purposes.
+
== Recording of the presentation ==
  
An abstract is required for every paper; it should succinctly summarize the reason for the work, the main findings, and the conclusions of the study. Abstract is often presented separately from the article, so it must be able to stand alone. For this reason, references and hyperlinks should be avoided. If references are essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.
+
{| style="font-size:100%; color: #222222; border: 1px solid darkgray; background: #f3f3f3; table-layout: fixed; width:100%;"
 
+
|-  
==2 The main text==
+
| {{#evt:service=youtube|id=https://youtu.be/TFZ5-w3cvEw | alignment=center}}
 
+
|- style="text-align: center;"  
You can enter and format the text of this document by selecting the ‘Edit’ option in the menu at the top of this frame or next to the title of every section of the document. This will give access to the visual editor. Alternatively, you can edit the source of this document (Wiki markup format) by selecting the ‘Edit source’ option.
+
| Location: Technical University of Catalonia (UPC), Vertex Building.  
 
+
|- style="text-align: center;"
Most of the papers in Scipedia are written in English (write your manuscript in American or British English, but not a mixture of these). Anyhow, specific journals in other languages can be published in Scipedia. In any case, the documents published in other languages must have an abstract written in English.
+
| Date: 1-3 September 2015, Barcelona, Spain.
 
+
===2.1 Subsections===
+
 
+
Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1, 1.2, etc. and then 1.1.1, 1.1.2, ... Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any subsection may be given a brief heading. Capitalize the first word of the headings.
+
 
+
===2.2 General guidelines===
+
 
+
Some general guidelines that should be followed in your manuscripts are:
+
 
+
:*  Avoid hyphenation at the end of a line.
+
 
+
:*  Symbols denoting vectors and matrices should be indicated in bold type. Scalar variable names should normally be expressed using italics.
+
 
+
:*  Use decimal points (not commas); use a space for thousands (10 000 and above).
+
 
+
:*  Follow internationally accepted rules and conventions. In particular use the international system of units (SI). If other quantities are mentioned, give their equivalent in SI.
+
 
+
===2.3 Tables, figures, lists and equations===
+
 
+
Please insert tables as editable text and not as images. Tables should be placed next to the relevant text in the article. Number tables consecutively in accordance with their appearance in the text (<span id='cite-_Ref382560620'></span>[[#_Ref382560620|table 1]], table 2, etc.) and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article.
+
 
+
<span id='_Ref382560620'></span>
+
{| style="margin: 1em auto 1em auto;border: 1pt solid black;border-collapse: collapse;"
+
|-
+
| style="text-align: center;"|Thickness
+
| style="text-align: center;"|3.175 mm
+
|-
+
| style="text-align: center;"|Young Modulus
+
| style="text-align: center;"|12.74 MPa
+
|-
+
| style="text-align: center;"|Poisson coefficient
+
| style="text-align: center;"|0.25
+
|-
+
| style="text-align: center;"|Density
+
| style="text-align: center;"|1107 kg/m<sup>3</sup>
+
 
|}
 
|}
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
 
<span style="text-align: center; font-size: 75%;">Table 1: Material properties</span></div>
 
  
Graphics may be inserted directly in the document and positioned as they should appear in the final manuscript.
+
== General Information ==
 +
* Location: Technical University of Catalonia (UPC), Barcelona, Spain.
 +
* Date: 1 - 3 September 2015
 +
* Secretariat: [//www.cimne.com/ International Center for Numerical Methods in Engineering (CIMNE)].
  
<span id='_Ref448852946'></span>
+
== External Links ==
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
* [//https://congress.cimne.com/complas2015 Complas XIII] Official Website of the Conference.
[[Image:Scipedia.gif|center|480px]]
+
* [//www.cimnemultimediachannel.com/ CIMNE Multimedia Channel]
</div>
+
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
<span style="text-align: center; font-size: 75%;">Figure 1. Scipedia logo.</span></div>
+
  
Number the figures according to their sequence in the text (<span id='cite-_Ref448852946'></span>[[#_Ref448852946|figure 1]], figure 2, etc.). Ensure that each illustration has a caption. A caption should comprise a brief title. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used. Try to keep the resolution of the figures to a minimum of 300 dpi. If a finer resolution is required, the figure can be inserted as supplementary material
+
==References==
 
+
For tabular summations that do not deserve to be presented as a table, lists are often used. Lists may be either numbered or bulleted. Below you see examples of both.
+
 
+
1. The first entry in this list
+
 
+
2. The second entry
+
 
+
2.1. A subentry
+
 
+
3. The last entry
+
 
+
* A bulleted list item
+
 
+
* Another one
+
 
+
You may choose to number equations for easy referencing. In that case they must be numbered consecutively with Arabic numerals in parentheses on the right hand side of the page. Below is an example of formulae that should be referenced as eq. <span id='cite-_Ref424030152'></span>[[#_Ref424030152|(1)]].
+
 
+
{| style="width: 100%;"
+
|-
+
| style="vertical-align: top;"| <math>{\nabla }^{2}\phi =0</math>
+
| style="text-align: right;"|<span id='_Ref424030152'></span>
+
(1)
+
|}
+
 
+
===2.4 Supplementary material===
+
 
+
Supplementary material can be inserted to support and enhance your article. This includes video material, animation sequences, background datasets, computational models, sound clips and more. In order to ensure that your material is directly usable, please provide the files with a preferred maximum size of 50 MB. Please supply a concise and descriptive caption for each file.
+
 
+
==3 Bibliography==
+
 
+
<span id='_Ref449344604'></span>
+
Citations in text will follow a citation-sequence system (i.e. sources are numbered by order of reference so that the first reference cited in the paper is [<span id='cite-1'></span>[[#1|1]]], the second [<span id='cite-2'></span>[[#2|2]]], and so on) with the number of the reference in square brackets. Once a source has been cited, the same number is used in all subsequent references. If the numbers are not in a continuous sequence, use commas (with no spaces) between numbers. If you have more than two numbers in a continuous sequence, use the first and last number of the sequence joined by a hyphen (e.g. [<span id='cite-1'></span>[[#1|1]], <span id='cite-3'></span>[[#3|3]]] or [<span id='cite-2'></span>[[#2|2]]-<span id='cite-2'></span>[[#4|4]]]).
+
 
+
<span id='_Ref449084254'></span>
+
You should ensure that all references are cited in the text and that the reference list. References should preferably refer to papers published in Scipedia. Unpublished results should not be included in the reference list, but can be mentioned in the text. The reference data must be updated once publication is ready. Complete bibliographic information for all cited references must be given following the standards in the field (IEEE and ISO 690 standards are recommended). If possible, a hyperlink to the referenced publication should be given. See examples for Scipedia’s articles [<span id='cite-1'></span>[[#1|1]]], other journal articles [<span id='cite-2'></span>[[#2|2]]], books [<span id='cite-3'></span>[[#3|3]]], book chapter [<span id='cite-4'></span>[[#4|4]]], conference proceedings [<span id='cite-5'></span>[[#5|5]]], and online documents [<span id='cite-6'></span>[[#6|6]]], shown in references section below.
+
 
+
==4 Acknowledgments==
+
 
+
Acknowledgments should be inserted at the end of the paper, before the references section.
+
 
+
==5 References==
+
 
+
<span id='_Ref449083719'></span>
+
 
<div id="1"></div>
 
<div id="1"></div>
[[#cite-1|[1]]] Author, A. and Author, B. (Year) Title of the article. Title of the Journal. Article code. Available: [http://www.scipedia.com/ucode. http://www.scipedia.com/ucode.]
+
[[#cite-1|[1]]] A.M. Maniatty and P. Karvani, “Constitutive relations for modeling single crystal GaN at
 
+
elevated temperatures,” J. Engng. Mater. Tech., 137, 011002 (2015).
 
<div id="2"></div>
 
<div id="2"></div>
[[#cite-2|[2]]] Author, A. and Author, B. (Year) Title of the article. Title of the Journal. Volume number, first page-last page.
+
[[#cite-2|[2]]] D.M. Pyle, J. Lu, D.J. Littlewood, and A.M. Maniatty, “Effect of 3D grain structure
 
+
representation in polycrystal simulations,” Comp. Mech., 52, 135-150 (2013).
 
<div id="3"></div>
 
<div id="3"></div>
[[#cite-3|[3]]] Author, C. (Year). Title of work: Subtitle (edition.). Volume(s). Place of publication: Publisher.
+
[[#cite-3|[3]]] J.D. Hochhalter, D.J. Littlewood, R.J. Christ Jr., M.G. Veilleux, J.E. Bozek, A.R. Ingraffea, and
 
+
A.M. Maniatty, “A geometric approach to modeling microstructurally small fatigue crack
 +
formation, part II: simulation and prediction of crack nucleation in AA 7075-T651.” Modell.
 +
Simul. Mater. Sci. Eng., 18, 045004 (2010).
 
<div id="4"></div>
 
<div id="4"></div>
[[#cite-4|[4]]] Author of Part, D. (Year). Title of chapter or part. In A. Editor & B. Editor (Eds.), Title: Subtitle of book (edition, inclusive page numbers). Place of publication: Publisher.
+
[[#cite-4|[4]]] A.M. Maniatty, G.S. Cargill III, L.E. Moyer, and C-J. Yang, “Investigation of thermal stress
 
+
variability due to microstructure in thin aluminum films.” J. Appl. Mech., 78, 011012-1-9
<div id="5"></div>
+
(2011).
[[#cite-5|[5]]] Author, E. (Year, Month date). Title of the article. In A. Editor, B. Editor, and C. Editor. Title of published proceedings. Paper presented at title of conference, Volume number, first page-last page. Place of publication.
+
 
+
<div id="6"></div>
+
[[#cite-6|[6]]] Institution or author. Title of the document. Year. [Online] (Date consulted: day, month and year). Available: [http://www.scipedia.com/document.pdf http://www.scipedia.com/document.pdf]. [Accessed day, month and year].
+

Latest revision as of 11:06, 18 October 2019

Abstract

The macroscale mechanical behaviour of crystalline materials, such as polycrystalline metals and single crystal semiconductors, is dictated by the anisotropic behaviour of individual crystals/grains and their interactions with neighboring crystals or other materials. Furthermore, the elastic-plastic response of individual crystals is associated with the underlying atomic lattice structure and phenomena of dislocation glide on the slip systems and dislocation multiplication and interactions. As a result, microstructural characteristics such as grain size, shape, and orientation, have a significant effect on the macroscale mechanical properties and performance. Moreover, these microstructural features are strongly affected by the thermal-mechanical process used to create a part. Because of this, tremendous effort has been made to develop crystal plasticity models that explicitly model the crystal (grain) scale behavior to predict the local macroscale response.

In this talk, a framework for computational modelling of discretized single or polycrystal grain structures subjected to thermal-mechanical loading conditions is presented. The model is general for finite deformations with the crystal plasticity model based on dislocation motion and interactions. A parallel finite element implementation is briefly described. Then, applications including predicting microstructure evolution during large deformation processing, fatigue crack initiation, and defect formation during single crystal AlN crystal growth will be presented

Recording of the presentation

Location: Technical University of Catalonia (UPC), Vertex Building.
Date: 1-3 September 2015, Barcelona, Spain.

General Information

External Links

References

[1] A.M. Maniatty and P. Karvani, “Constitutive relations for modeling single crystal GaN at elevated temperatures,” J. Engng. Mater. Tech., 137, 011002 (2015).

[2] D.M. Pyle, J. Lu, D.J. Littlewood, and A.M. Maniatty, “Effect of 3D grain structure representation in polycrystal simulations,” Comp. Mech., 52, 135-150 (2013).

[3] J.D. Hochhalter, D.J. Littlewood, R.J. Christ Jr., M.G. Veilleux, J.E. Bozek, A.R. Ingraffea, and A.M. Maniatty, “A geometric approach to modeling microstructurally small fatigue crack formation, part II: simulation and prediction of crack nucleation in AA 7075-T651.” Modell. Simul. Mater. Sci. Eng., 18, 045004 (2010).

[4] A.M. Maniatty, G.S. Cargill III, L.E. Moyer, and C-J. Yang, “Investigation of thermal stress variability due to microstructure in thin aluminum films.” J. Appl. Mech., 78, 011012-1-9 (2011).

Back to Top

Document information

Published on 29/06/16

Licence: CC BY-NC-SA license

Document Score

0

Views 189
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?