X. Yu, S. Li, X. Chang, Y. Liao, D. Chen
This study investigated the degradation mechanism behind the reinforced mortar exposed to chloride, sulfate and electric field. The steel-mortar samples were exposed to 5% Na2SO4, 5% NaCl + 5% Na2SO4 solutions and deionized water in two regimes (full immersion and direct current electric field). The efficiencies of three current densities were compared as well. The total and free sulfate ion content in the mortar were measured. The microstructural analysis by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) were conducted. The results indicated that the electric field drastically increased the ingress of sulfate, as well as the sulfate reaction. Meanwhile, the current attenuated the interaction between chloride and sulfate. The increase in current density decreased the efficiency of degradation acceleration. An acceleration factor (AF) was proposed based on the comparison between the number of ions in the mortar under electric field and immersion. Findings from this study are beneficial to develop a reliable acceleration method for the long-term performance of RC structures under chloride and sulfate attack.
Keywords:
Published on 03/10/23Submitted on 03/10/23
DOI: 10.23967/c.dbmc.2023.017Licence: CC BY-NC-SA license
Views 1Recommendations 0
Are you one of the authors of this document?