(128 intermediate revisions by the same user not shown)
Line 19: Line 19:
 
==Abstract==
 
==Abstract==
  
Urban drainage systems are facing increasing challenges due to climate change, urban growth, and the need for more sustainable water management. To address these issues, the Digital DRAIN project has developed an open-source tool that integrates different models within a GIS environment to analyse the performance of drainage systems. The tool helps assess both water flows and pollution, while also supporting the design of sustainable solutions and adaptation strategies. Delivered as the QGIS plugin IberGIS, it provides an accessible framework to improve urban water management and enhance resilience against floods and environmental impacts.
+
Urban drainage systems are facing increasing challenges due to climate change, urban growth, and the need for more sustainable water management. To address these issues, the Digital DRAIN project has developed a tool that integrates different models within a GIS environment to analyse the performance of urban drainage systems. The tool helps assess both water flows and pollution, while also supporting the design of sustainable solutions and adaptation strategies. Delivered as the QGIS plugin IberGIS, it provides an accessible framework to improve urban water management and enhance resilience against floods and environmental impacts. This document is a user's guide to introduce the user how to use IberGIS.
  
 
'''Keywords''': urban drainage, 1D/2D modelling, Iber-SWMM, QGIS
 
'''Keywords''': urban drainage, 1D/2D modelling, Iber-SWMM, QGIS
Line 27: Line 27:
 
==Resumen==
 
==Resumen==
  
Los sistemas de drenaje urbano se enfrentan a retos cada vez mayores debido al cambio climático, el crecimiento urbano y la necesidad de una gestión del agua más sostenible. Para abordar estos problemas, el proyecto Digital DRAIN ha desarrollado una herramienta de código abierto que integra diversos modelos en un entorno SIG para analizar el rendimiento de los sistemas de drenaje. Esta herramienta permite evaluar tanto el caudal como la contaminación del agua, además de facilitar el diseño de soluciones sostenibles y estrategias de adaptación. Implementada como complemento de QGIS, IberGIS ofrece un marco accesible para mejorar la gestión del agua urbana y aumentar la resiliencia ante inundaciones e impactos ambientales.
+
Los sistemas de drenaje urbano se enfrentan a retos cada vez mayores debido al cambio climático, el crecimiento urbano y la necesidad de una gestión del agua más sostenible. Para abordar estos problemas, el proyecto Digital DRAIN ha desarrollado una herramienta que integra diversos modelos en un entorno SIG para analizar el rendimiento de los urban sistemas de drenaje. Esta herramienta permite evaluar tanto el caudal como la contaminación del agua, además de facilitar el diseño de soluciones sostenibles y estrategias de adaptación. Implementada como complemento de QGIS, IberGIS ofrece un marco accesible para mejorar la gestión del agua urbana y aumentar la resiliencia ante inundaciones e impactos ambientales. Este documento es una guía de usaurio para introducir al usuario en el manejo de IberGIS.
  
 
'''Palabras clave''': drenaje urbano, simulación 1D/2D, Iber-SWMM, QGIS
 
'''Palabras clave''': drenaje urbano, simulación 1D/2D, Iber-SWMM, QGIS
Line 39: Line 39:
 
Along these lines, the project entitled ‘Digital DRAIN. An Integrated Urban Drainage Model’ (DRAIN, CPP2021-008756) aims to develop an open-source, free modelling tool for analysing all processes of urban drainage, integrated within a graphical information system (GIS) environment. Its purpose is to assess hydraulic performance and the effects of diffuse pollution both on the surface, within the drainage network, and in the receiving environment. The tool will also include specific modules for the implementation of Sustainable Urban Drainage Systems (SuDS) and for analysing actions related to climate change adaptation.
 
Along these lines, the project entitled ‘Digital DRAIN. An Integrated Urban Drainage Model’ (DRAIN, CPP2021-008756) aims to develop an open-source, free modelling tool for analysing all processes of urban drainage, integrated within a graphical information system (GIS) environment. Its purpose is to assess hydraulic performance and the effects of diffuse pollution both on the surface, within the drainage network, and in the receiving environment. The tool will also include specific modules for the implementation of Sustainable Urban Drainage Systems (SuDS) and for analysing actions related to climate change adaptation.
  
The project derived in a plugin of [https://qgis.org/ QGIS], called IberGIS. This plugin is a full integration of the one-dimensional urban drainage software [https://www.epa.gov/water-research/storm-water-management-model-swmm SWMM] and a integration of the two-dimensional hydrodynamic software [http://www.iberaula.com Iber], particularly its calculation module Iber-SWMM [<span id='cite-_Bib001'></span>[[#_Bib001|1]]]. Thus, not all capabilities neither calculation modules of Iber are available. Only particular characteristics of the Iber-SWMM module are described below.
+
The project derived in a plugin of '''[https://qgis.org/ QGIS]''', called IberGIS. This plugin is a full integration of the one-dimensional urban drainage software '''[https://www.epa.gov/water-research/storm-water-management-model-swmm SWMM]''' and an integration of the two-dimensional hydrodynamic software '''[http://www.iberaula.com Iber]''', particularly its calculation module Iber-SWMM [<span id='cite-_Bib001'></span>[[#_Bib001|1]]]. Thus, not all capabilities neither calculation modules of Iber are available. Only particular characteristics of the Iber-SWMM module are described below.
 +
 
 +
'''QGIS plugin'''
 +
 
 +
IberGIS can be freely downloaded through [http://www.iberaula.com www.iberaula.com].
  
 
'''Data'''
 
'''Data'''
Line 57: Line 61:
 
===2.1 Generalities===
 
===2.1 Generalities===
  
The graphical user interface (GUI) of the plugin IberGIS has been developed within the QGIS environment, and it follows the visual style guide. As for any plugin of QGIS, IberGIS can be installed through '''Plugins >> Manage and Install Plugins''' menu. Type “'''IberGIS'''” to search it and then click on '''Install Plugin''' button. Once installed, and according to the User’s Profile, it will be loaded automatically during the QGIS initialization.
+
The graphical user interface (GUI) of the plugin IberGIS has been developed within the QGIS environment (version 3.40 or greater), and it follows its visual style guide. As for any plugin of QGIS, IberGIS can be installed through '''Plugins >> Manage and Install Plugins''' menu and install it loading the *.zip file available from [http://www.iberaula.com www.iberaula.com]. Once installed, and according to the User’s Profile, it will be loaded automatically during the QGIS initialization.
 +
 
 +
The calculation engine, Iber-SWMM, used in this plugin corresponds to the version of Iber 3.4.0. Older versions are not compatible, while future versions might not be fully compatible.
  
 
<span id='_Toc203976059'></span>
 
<span id='_Toc203976059'></span>
  
 
===2.2 Particularities===
 
===2.2 Particularities===
====2.3.1 Velocity-dependent terms====
+
====2.2.1 Model structure====
  
 
The IberGIS has a workflow fully integrated in the QGIS software. Once installed, the '''IberGIS button''' ([[File:Sanz-Ramos_et_al_2025a_7022_Icon_Iber.png|20px]]) will automatically appear in the toolbars of QGIS. Clicking there, a new window will ask for the geopackage and QGIS project creation (Fig. 1a).
 
The IberGIS has a workflow fully integrated in the QGIS software. Once installed, the '''IberGIS button''' ([[File:Sanz-Ramos_et_al_2025a_7022_Icon_Iber.png|20px]]) will automatically appear in the toolbars of QGIS. Clicking there, a new window will ask for the geopackage and QGIS project creation (Fig. 1a).
Line 79: Line 85:
 
* '''Results''' ([[File:Sanz-Ramos_et_al_2025a_5527_Icon_Results.png|20px]]). Options to visualize the SWMM and Iber results.
 
* '''Results''' ([[File:Sanz-Ramos_et_al_2025a_5527_Icon_Results.png|20px]]). Options to visualize the SWMM and Iber results.
 
* '''Check project''' ([[File:Sanz-Ramos_et_al_2025a_2183_Icon_Iber.png|20px]]). Dialog that starts a check project.
 
* '''Check project''' ([[File:Sanz-Ramos_et_al_2025a_2183_Icon_Iber.png|20px]]). Dialog that starts a check project.
 +
  
 
Additionally, the '''Processing Toolbox''' will show two specific option for IberGIS plugin (Fig. 1d). '''Processing Toolbox >> IberGIS''' is related to automatize general procedures such as project checking, import necessary features (ground, roof, inlets layers), import results, and associate Iber inlets/roofs to SWMM junctions. The other one, accessible though ''''Processing Toolbox >> IberGIS – Mesh''', is a pack of particular options to obtain a well-conditioned calculation mesh.
 
Additionally, the '''Processing Toolbox''' will show two specific option for IberGIS plugin (Fig. 1d). '''Processing Toolbox >> IberGIS''' is related to automatize general procedures such as project checking, import necessary features (ground, roof, inlets layers), import results, and associate Iber inlets/roofs to SWMM junctions. The other one, accessible though ''''Processing Toolbox >> IberGIS – Mesh''', is a pack of particular options to obtain a well-conditioned calculation mesh.
  
{| style="width: 84%;margin: 1em auto 0.1em auto;border-collapse: collapse;"  
+
{| style="width: 80%;margin: 1em auto 0.1em auto;border-collapse: collapse;"  
 
|-
 
|-
|  style="text-align: center;width: 100%;"|[[File:Sanz-Ramos_et_al_2025a_3747_Fig_1.png|306px]]]  
+
|  style="text-align: center;width: 100%;"|[[File:Sanz-Ramos_et_al_2025a_3164_Fig_1.png|1600px]]  
 
|}
 
|}
 +
<span style="text-align: center; font-size: 75%;">'''Fig. 1. IberGIS workflow: (a) geopackage and project creation window; (b) build-up processing toolbar; (c) other options toolbar; (d) processing toolbox of IberGIS; (e) layers structure.'''</span>
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
Note that any IberGIS model is saved in two files: a geopackage and the QGIS project. Both are linked and when the user opens the QGIS project, automatically it will look for the geopackage. Additionally, the geopackage contains the model itself, so the user can share it without the QGIS project.
[[File:Sanz-Ramos_et_al_2025a_3747_Fig_1.png|306px]] </div>
+
 
+
<span style="text-align: center; font-size: 75%;">'''Fig. 1. Land uses windows: (a) database of land uses for non-Newtonian flows; (b) list of velocity-dependent parameters according to each rheological model.'''</span>
+
  
 
<span id='_Toc203976060'></span>
 
<span id='_Toc203976060'></span>
  
===2.3 Implementation of rheological properties of the fluid===
+
====2.2.2 Workflow====
  
As mentioned previously, there is a different way to implement the rheological properties of the fluid in Iber-NNF.
+
All these options and functionalities are oriented to facilitate the model build-up process. Since the model is saved in a unique geopackage, different kind of entities can be saved on it. On one hand, '''non-visual objects''' is managed in the abovementioned option ([[File:Sanz-Ramos_et_al_2025a_3799_Icon_TS.png|20px]]). On the other hand, the creation and edition of '''visual objects''' is based on a strict group of layers (Fig. 1e) that contains '''TEMPORAL''' information (e.g., meshes, results), '''INPUT''' data (e.g., data of SWMM and Iber models) and a '''BASE MAP''' image. '''It is mandatory to preserve the structure of the INPUT group''', since other data saved in different layers will be omitted during the calculation process:
  
<span id='_Toc203976061'></span>
+
'''INPUT'''
 +
* SWMM
 +
** Junction (layer of points)
 +
** Divider (layer of points)
 +
** Outfall (layer of points)
 +
** Storage (layer of points)
 +
** Conduit (layer of lines)
 +
** Pump (layer of lines)
 +
** Orifice (layer of lines)
 +
** Weir (layer of lines)
 +
** Outlet (layer of lines)
 +
* IBER
 +
** Inlet (layer of points)
 +
** Hyetograph (layer of points)
 +
** Boundary conditions (layer of lines)
 +
** Bridge (layer of lines)
 +
** Culvert (layer of lines)
 +
** Pinlet (layer of surfaces)
 +
** Landuses (layer of dataset)
 +
* MESH
 +
** Mesh anchor points (layer of points)
 +
** Mesh anchor lines (layer of lines)
 +
** Roof (layer of surfaces)
 +
** Ground (layer of surfaces)
  
====2.3.1 Velocity-dependent terms====
 
  
Velocity-dependent terms of the rheological model must be implemented as a friction slope at each mesh element (Data >> Roughness >> Friction slope…). These parameters can be defined manually or automatically (by a raster file), and are associated to the concept known as ‘Land use’; thus, they can vary spatially.
+
The generation of '''this group of layers''' is automatic during the models creation. It '''can be edit manually''', using the available tools of QGIS, '''or automatically''', using the tools of IberGIS developed ad-hoc (Fig. 1d). Thus, a manual edition requires the generation of the geometric entities of some layer of INPUT group. I.e., if the user wants to simulate only a SWMM model, the proper layer must contain all the information together with the IBER and MESH data. Whereas, an Iber model, without sewer network, requires the definition of, at least, Ground and Boundary conditions layers. Roof layer is optional and when exists it can be linked directly to the Ground or to the Junction layer (if an Iber-SWMM model is simulated). In this sense, an Iber-SWMM model, i.e., a coupled urban drainage simulation, also requires the definition of the Inlet layer and, if there is no flow, the definition of the rainfall data, whether it is by hyetographs or rasters of rain.
  
{| style="width: 84%;margin: 1em auto 0.1em auto;border-collapse: collapse;"
+
It is worth noticing that raster data as topography or infiltration losses can be added to any layer’s group. During the Mesh generation process ([[File:Sanz-Ramos_et_al_2025a_1076_Icon_Mesh.png|20px]]) these data, if exists in the project, can be selected. Other raster data, such as rainfall raster, must be defined as a timeseries ([[File:Sanz-Ramos_et_al_2025a_8317_Icon_TS.png|20px]]) by defining the raster name per each time interval. The directory where the raster are located must be provided.
|-
+
|  style="text-align: center;width: 50%;"|[[Image:Draft_Sanz-Ramos_617790713-image2.png|204px]]  
+
|  style="text-align: center;width: 50%;"|[[Image:Draft_Sanz-Ramos_617790713-image3.png|204px]]  
+
|-
+
|  style="text-align: center;"|(a)
+
|  style="text-align: center;"|(b)
+
|}
+
  
 +
Previous to the simulation process ([[File:Sanz-Ramos_et_al_2025a_6615_Icon_Run.png|20px]]), a new folder will be created containing the files that calculation engine Iber-SWMM will be used to carry out the simulation, even save the results. As each simulation scenario can be saved independently, different folders will be created. Note if you share the model (*.gpkg and/or *.gps), the folder that contains the results will be lost. So, the model must be re-simulated to generate again the results or consider to share all this information together with the model.
  
<span style="text-align: center; font-size: 75%;">'''Fig. 1. Land uses windows: (a) database of land uses for non-Newtonian flows; (b) list of velocity-dependent parameters according to each rheological model.'''</span>
+
====2.2.3 Calculation engine====
  
<span id='_Toc203976062'></span>
+
IberGIS uses the calculation engine of Iber and SWMM, and it is particularly oriented to coupled simulations using the integrated module called Iber-SWMM [1]. The urban drainage models usually require high computational effort, especially in large urban areas, the computational time can be an enormous bottleneck. To solve this issue, the simulations are carried out using the parallelised version of Iber-SWMM for NVIDIA graphical processing units (GPU) [<span id='cite-_Bib002'></span>[[#_Bib002|2]]]. This allows accelerations in the computational time from 27 to 250 times faster than the single-threaded version.
  
====2.3.2 Non–Velocity-dependent terms====
+
Both models are freely distributed:
  
By contrast, non–Velocity-dependent terms can be interpreted as a characteristic of the fluid; thus, they cannot vary spatially –perhaps temporally– and they must be defined as a constant value (Data >> Problem data > Non Newtonian Fluid). This is the case of the flow density, the pressure factor, the Coulomb friction coefficient, the yield stress, etc.
+
* '''SWMM''': [https://www.epa.gov/water-research/storm-water-management-model-swmm https://www.epa.gov/water-research/storm-water-management-model-swmm]
 +
* '''Iber''': [https://www.iberaula.com/ https://www.iberaula.com/]
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
<span id='_Toc203976061'></span>
[[Image:Draft_Sanz-Ramos_617790713-image4.png]] </div>
+
  
<span id='_Hlk202869113'></span><span style="text-align: center; font-size: 75%;">'''Fig. 2. Problem data window. Non-Newtonian fluid tab allows the selection of the rheological model to be used and other properties.'''</span>
+
===2.3 Current and future versions===
  
<span id='_Toc203976063'></span>
+
As above-mentioned, the current version of '''IberGIS is particularly oriented to address flood scenarios in urban environments''' using, in a coupled way, two computational engines: Iber for the rainfall-runoff process and SWMM for the sewer network. Full capabilities and functionalities of the calculation engines are not currently available.
  
===2.4 Stop criterion===
+
SWMM cannot be run independently since the rainfall-runoff process is carried out by Iber. Future versions might deal with these casuistic by generating a coupled and dual model, part of them being simulated with SWMM and the rest with Iber-SWMM.
  
The detention of any fluid is consequence of a balance between resistance and driving forces. Iber-NNF uses an ad hoc numerical scheme that allows the stop of the fluid according to the fluid properties [<span id='cite-_Bib002'></span>[[#_Bib002|2]]], i.e. the rheological model.
+
Iber currently has 9 calculation modules [<span id='cite-_Bib003'></span>[[#_Bib003|3]]] that works together with the hydrodynamic one, the principal module which the others depends on it. Only functionalities oriented to urban drainage of Iber-SWMM module are currently implemented in IberGIS. Despite that, some other functionalities, especially those related to the general hydrodynamics in flood scenarios assessment, are implemented such as bridges and culverts. Future versions might include other calculation modules of Iber.
  
Another popular numerical model uses a stopping criterion based on controlling the momentum, where the fluid is made to stop when its momentum is lower than a user-defined fraction of its maximum momentum. However, this criterion lacks a physical basis, as the maximum momentum depends on the avalanche’s characteristics at very different location and time than those when it stops.
+
==3 Study cases==
  
Both stop criterion are implemented into Iber-NNF; nevertheless, '''we encourage to use the ‘Rheology based’ criterion because is physically based'''.
+
This User’s tutorial is composed by three examples: two real laboratory facility tests and a synthetic case. It is oriented to provide the elemental steps to build-up an IberGIS model, mainly to apply the Iber-SWMM calculation module for urban drainage applications.
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
===3.1 Laboratory case: grate inlet testing platfrom===
[[Image:Draft_Sanz-Ramos_617790713-image5.png|306px|alt=''''Fig. 3. Problem data window. Selection of the stop criterion.''''|'''Fig. 3. Problem data window. Selection of the stop criterion.''']] </div>
+
  
<span style="text-align: center; font-size: 75%;">'''Fig. 3. Problem data window. Selection of the stop criterion.'''</span>
+
The experiment facility, located in the Hydraulic and Fluid Mechanics Laboratory of the Polytechnic University of Catalonia (UPC-BarcelonaTECH), consists in a 1:1-scale platform of 5.5 m-length and 3 m-width that represents the roadway of a street. This facility can be feed by a constant discharge up to 200 L/s and it can change its longitudinal and transverse slopes from 0 to 10 % and 0 to 4 %, respectively. It was originally designed to test the efficiency of longitudinal and transversal grate inlets [<span id='cite-_Bib004'></span>[[#_Bib004|4-10]]]; nowadays, it is used to assess hazard criteria for objects that can be floated and transported during rainfall events in urban environments [<span id='cite-_Bib011'></span>[[#_Bib011|11-14]]]. This exercise aims of familiarizing the user with the graphical interface and the structure of the layer, and to present other relevant information.
  
<span id='_Toc203976064'></span>
+
====3.1.1 Data====
  
==3 Governing equations==
+
The model will be build-up using the tools developed ad-hoc to facilitate the whole process. To that end, the following geometric entities are provided:
  
This section is a brief description of the governing equations of Iber-NNF. Further details about this hydrodynamic module and the numerical scheme used to solve the equations can be found in Sanz-Ramos et al. [<span id='cite-_Bib002'></span>[[#_Bib002|2]]].
+
* Coordinates of the geometric entity (text)
  
<span id='_Toc203976065'></span>
 
  
===3.1 2D shallow water equations for non-Newtonian shallow flows===
+
None additional geometric information is needed since the model will be created manually.
  
Iber-NNF solves a particular case of the two-dimensional shallow water equations (2D-SWE), a hyperbolic nonlinear system of three partial differential equations described in Equation <span id='cite-_Ref202869890'></span>[[#_Ref202869890|(1)]]:
+
====3.1.2 Model build-up====
  
{| class="formulaSCP" style="width: 100%;border-collapse: collapse;width: 100%;text-align: center;"  
+
Once opened QGIS, load the IberGIS plugin by clicking on the icon [[File:Sanz-Ramos_et_al_2025a_7924_Icon_Iber.png|20px]], and the model generation window will appear (Fig. 2a). Please, enter the model name (GPKG Name) and a description. Then, define the location and the coordinate system using the Spatial Reference System Identifier (SRID) —in this case 25830— and click the Accept button. After that, IberGIS asks for the QGIS project creation (Fig. 2b). This step is mandatory since it will automatically load the geopackage into the QGIS project
 +
 
 +
{| style="width: 80%;margin: 1em auto 0.1em;border-collapse: collapse;"  
 
|-
 
|-
|  
+
| style="text-align: center;width: 45%;"|[[File:Sanz-Ramos_et_al_2025a_7847_Fig_2a.png|1600px]]
{| style="text-align: center;margin:auto;width: 100%;"
+
|  style="text-align: center;width: 45%;"|[[File:Sanz-Ramos_et_al_2025a_8900_Fig_2b.png|1600px]]
 
|-
 
|-
| <math>\begin{matrix}\frac{\partial h}{\partial t}+\frac{\partial {q}_{x}}{\partial x}+\frac{\partial {q}_{y}}{\partial y}=E\\\frac{\partial {q}_{x}}{\partial t}+\frac{\partial }{\partial x}\left( \frac{{q}_{x}^{2}}{h}+g'\frac{{h}^{2}}{2}{K}_{p}\right) +\frac{\partial }{\partial y}\left( \frac{{q}_{x}{q}_{y}}{h}\right) =g'h\left( {S}_{o,y}-{S}_{f,x}\right) \\\frac{\partial {q}_{x}}{\partial t}+\frac{\partial }{\partial x}\left( \frac{{q}_{x}{q}_{y}}{h}\right) +\frac{\partial }{\partial y}\left( \frac{{q}_{y}^{2}}{h}+g'\frac{{h}^{2}}{2}{K}_{p}\right) =g'h\left( {S}_{o,y}-{S}_{f,y}\right) \end{matrix}\,</math>
+
| style="text-align: center;"|(a)
|}
+
|  style="text-align: center;"|(b)
|  style="text-align: center;width: 5px;text-align: right;white-space: nowrap;"|<span id='_Ref202869890'></span>(1)
+
 
|}
 
|}
 +
<span style="text-align: center; font-size: 75%;">'''Fig. 2. Model generation window: (a) creation of the geopackage tab; (b) creation of the QGIS project tab.'''</span>
  
 +
The geometry of the facility is defined by 8 points that we have to load as Delimited Text Layer by the menu '''Layer >> Add Layer >> Delimited Text Layer'''. Now, we have to select '''start editing''' ([[File:Sanz-Ramos_et_al_2025a_9421_Icon_editing.png|20px]]) the layer called ‘'''Ground'''’ located in the group '''INPUT > IBER''', which contains the main information of model geometry. Add Polygon Feature ([[File:Sanz-Ramos_et_al_2025a_3505_Icon_polygon.png|20px]]) by selecting the imported points and creating a polygon that represents the street part of the laboratory facility platform (Fig. 3). After finishing the geometry, the Feature Attribute table of ‘Ground’ layer will appear asking for the geometry properties. We can introduce a ‘'''cellsize'''’ of 0.2 m and a ‘'''custom_roughness'''’ of 0.015 s·m<sup>-1/3</sup> (Fig. 3a). Repeat this action to create the polygon that represents de grate inlet geometry and introducing a ‘cellsize’ and ‘custom_roughness’ of 0.1 m and 0.02, respectively (Fig. 3b). '''Finish editing mode to save the changes''' into ‘Ground’ layer. Note, ‘Enable Snapping’ ([[File:Sanz-Ramos_et_al_2025a_4548_Icon_snapping.png|20px]]) option will facilitate the creation of the model.
  
<span id='_Hlk123797141'></span>where <math display="inline">h</math> is the water depth, <math display="inline">{q}_{x}</math> and <math display="inline">{q}_{y}</math> are the two components of the specific discharge, <math display="inline">g</math> is the gravitational acceleration, <math display="inline">{S}_{o,x}</math> and <math display="inline">{S}_{o,y}</math> are the two bottom slope components computed as <math display="inline">{\mathit{\boldsymbol{S}}}_{\mathit{\boldsymbol{o}}}=</math><math>{\left( \frac{\partial {z}_{b}}{\partial x},\frac{\partial {z}_{b}}{\partial y}\right) }^{T}</math>, where <math display="inline">{z}_{b}</math> is the bed elevation, and <math display="inline">{S}_{f,x}</math> and <math display="inline">{S}_{f,y}</math> are the two friction slope components computed throughout the rheological model. The friction forces exerted over an inclined bed and the pressure terms can be corrected by replacing the gravity acceleration <math display="inline">g</math> by <math display="inline">{g}^{'}=</math><math>\mathrm{g{cos}^{2}}\,\theta</math>  [<span id='cite-_Bib009'></span>[[#_Bib009|9]],<span id='cite-_Bib010'></span>[[#_Bib010|10]],<span id='cite-_Bib011'></span>[[#_Bib011|11]]]. Since the hydrostatic and isotropic pressure distribution cannot be assumed for non-Newtonian flows, as it is done for free surface water flows [<span id='cite-_Bib012'></span>[[#_Bib012|12]]], a factor <math display="inline">{K}_{p}</math> multiplying the pressure terms in the momentum equations was applied [<span id='cite-_Bib013'></span>[[#_Bib013|13]]]. A <math display="inline">{K}_{p}</math> value equal to 1 implies hydrostatic and isotropic pressure distribution. The term <math display="inline">E</math> is entrainment, a process by which solid particles or fragments become incorporated into a moving fluid. The current code partially integrates entrainment formulas based on flow velocity criterion [<span id='cite-_Bib014'></span>[[#_Bib014|14]]], flow height criterion [<span id='cite-_Bib015'></span>[[#_Bib015|15]]] and bed shear stress criterion [<span id='cite-_Bib016'></span>[[#_Bib016|16]]]. The acknowledgment of entrainment is essential for ensuring reliable outcomes and, thus, preventing the underestimation of the volume of snow descending a slope.
+
{| style="width: 80%;margin: 1em auto 0.1em auto;border-collapse: collapse;"  
 
+
<span id='_Toc203976066'></span>
+
 
+
===3.2 Rheological models===
+
 
+
Rheological models to describe both dynamic and static phase of non–Newtonian shallow flows exist for a wide field of applications. In particular, for those related to environmental flows, and more specially for shallow flows, several rheological models have been developed to describe the relationship between the shear stress and the shear rate [<span id='cite-_Bib017'></span>[[#_Bib017|17]]].
+
 
+
From the simplest Potential law to the full –and complex– Bingham model, several rheological models exist in the literature, the development of each one being oriented to achieve a particular reproduction of a fluid behaviour. The aim of Iber-NNF is not to include as rheological models as possible –or exist–; however, there are some models that, although they have been omitted, can be easily integrated into the proposed numerical scheme by slightly adapting the code. This would allow a broader simulation of the behaviour of non–Newtonian shallow fluids.
+
 
+
Two hypotheses are usually considered in non-Newtonian shallow flows modelling: ''a monophasic fluid'', in which the fluid is formed by a unique phase where all components are perfectly mixed, and ''shear stress grouping'', in which the effect of different shear stresses are grouped as five components of a single term [<span id='cite-_Bib018'></span>[[#_Bib018|18]]] as follows:
+
 
+
{| class="formulaSCP" style="width: 100%;margin: 1em auto 0.1em auto;width: 100%;text-align: center;"  
+
 
|-
 
|-
|  
+
| style="text-align: center;width: 51%;"|[[File:Sanz-Ramos_et_al_2025a_2142_Fig_3a.png|1600px]]
{| style="text-align: center;margin:auto;width: 100%;"
+
|  style="text-align: center;width: 20%;"|[[File:Sanz-Ramos_et_al_2025a_8359_Fig_3b.png|1600px]]
 
|-
 
|-
| <math>\tau ={\tau }_{d}+{\tau }_{t}+{\tau }_{v}+{\tau }_{mc}+{\tau }_{c}</math>
+
| style="text-align: center;"|(a)
 +
|  style="text-align: center;"|(b)
 
|}
 
|}
|  style="text-align: center;width: 5px;text-align: right;white-space: nowrap;"|<span id='_Ref202871261'></span>(2)
+
{| style="width: 80%;margin: 1em auto 0.1em auto;border-collapse: collapse;"
 +
|-
 +
|  style="text-align: center;width: 75%;"|[[File:Sanz-Ramos_et_al_2025a_2387_Fig_3c.png|1600px]]
 +
|-
 +
|  style="text-align: center;"|(c)
 
|}
 
|}
 +
<span style="text-align: center; font-size: 75%;">'''Fig. 3. ‘Ground’ layer creation: (a) generation of the platform geometry; (b) generation of the grate inlet geometry; (c) View of the attribute table of ‘Ground’ layer.'''</span>
  
 +
This geometry corresponds to the grate inlet called ‘Barcelona1’, commonly used in Barcelona city and already experimentally and numerically tested in this facility (e.g., [<span id='cite-_Bib009'></span>[[#_Bib009|9]],<span id='cite-_Bib010'></span>[[#_Bib010|10]],<span id='cite-_Bib015'></span>[[#_Bib015|15-17]]]). Open the attribute table of ‘Ground’ layer to verify that, indeed, the geometry is properly saved together with the properties that we defined previously (Fig. 3c). Now, we can edit both the geometry and the properties of each geometrical feature of this layer.
  
where <math display="inline">{\tau }_{d}</math> represents the dispersive term, <math display="inline">{\tau }_{t}</math> the turbulent term, <math display="inline">{\tau }_{v}</math> the viscous term, <math display="inline">{\tau }_{mc}</math> the Mohr–Coulomb terms, and <math display="inline">{\tau }_{c}</math> the cohesive term. In these components, the appropriate rheological model for the particular purpose of each work is obtained by selecting one or several components of Equation <span id='cite-_Ref202871261'></span>[[#_Ref202871261|(2)]].
+
We can hide or delete the auxiliary layer of points used to create the polygons of ‘Ground’ layer.
  
Iber-NNF integrates several rheological models to represent the resistance forces that act against flow motion of non–Newtonian flows, such as mudflows, debris flows, snow avalanches, lahars, etc. [<span id='cite-_Bib002'></span>[[#_Bib002|2]],<span id='cite-_Bib003'></span>[[#_Bib003|3]],<span id='cite-_Bib004'></span>[[#_Bib004|4]],<span id='cite-_Bib005'></span>[[#_Bib005|5]],<span id='cite-_Bib006'></span>[[#_Bib006|6]],<span id='cite-_Bib007'></span>[[#_Bib007|7]]]. The following sections describe the rheological models implemented expressed in friction slope form ( <math display="inline">\tau =</math><math>\, \rho gh{S}_{f}</math>).
+
====3.1.3 Hydraulic conditions====
  
<span id='_Toc176677472'></span><span id='_Toc203976067'></span>
+
The hydraulic conditions of the model are a constant discharge (left side of the model), as inlet, and a critical flow regime (right side of the model), as outlet. To implement so, we have to open the '''Boundary conditions manager''' ([[File:Sanz-Ramos_et_al_2025a_1523_Icon_BCM.png|20px]]) and create a new by defining the ‘'''idval'''’ code (Fig. 4a). The ‘idval’ is a mandatory parameter, ‘name’ and ‘description’ are optional. IberGIS automatically will use this ‘idval’ as ‘Current scenario’. The manager window allows to store different inlet and outlet boundary conditions per scenario using the same ‘idval’ code.
  
====3.2.1 Manning====
+
Before creating the boundary conditions, especially those that use a timeseries like as inlet condition defined by a hydrograph, we must create previously a timeseries through '''Non visual object manager''' window ([[File:Sanz-Ramos_et_al_2025a_2557_Icon_TS.png|20px]]). Go to ‘'''Timeseries'''’ tab and create the inlet condition by defining an increasing discharge from 0 to 0.1 m<sup>3</sup>/s in 60 s (Fig. 4b).
  
<span id='_Hlk164577115'></span>The Manning rheological model, an empirical equation widely utilised in hydraulics and hydrology, applies to uniform flow in open channels and is a function of the channel velocity, flow area and channel slope:
+
The definition of the inlet/outlet condition can be carried out using the common options of QGIS by editing the layer called ‘'''Boundary conditions'''’. Select this layer and enable the editing mode ([[File:Sanz-Ramos_et_al_2025a_9785_Icon_editing.png|20px]]). Then, create a line ([[File:Sanz-Ramos_et_al_2025a_5879_Icon_createLINE.png|20px]]) that define the inlet boundary condition in the left side, as it is shown in Fig. 4c. In the Feature Attribute table of Boundary conditions select both the ‘bcscenario’ ('''BC1'''), ‘boundary_type’ ('''INLET TOTAL DISCHARGE (SUB)CRITICAL)''' and the ‘timeseries’ ('''Inlet'''). Repeat this process by selecting the opposite side for the outlet condition and defining the ‘bcscenario’ and the  ‘boundary_type’ as '''BC1''' and '''OUTLET (SUPER)CRITICAL''', respectively (Fig. 4d). Finish the edition mode and save it.
  
{| class="formulaSCP" style="width: 100%;margin: 1em auto 0.1em auto;width: 100%;text-align: center;"  
+
{| style="width: 80%;margin: 1em auto 0.1em auto;border-collapse: collapse;"  
 
|-
 
|-
|  
+
| style="text-align: center;width: 45%;"|[[File:Sanz-Ramos_et_al_2025a_1020_Fig_4a.png|1600px]]
{| style="text-align: center;margin:auto;width: 100%;"
+
|  style="text-align: center;width: 35%;"|[[File:Sanz-Ramos_et_al_2025a_6524_Fig_4b.png|1600px]]
 
|-
 
|-
| <math>{S}_{f}=\frac{{n}^{2}{v}^{2}}{{h}^{\frac{4}{3}}}</math>
+
| style="text-align: center;"|(a)
 +
|  style="text-align: center;"|(b)
 
|}
 
|}
|  style="text-align: center;width: 5px;text-align: right;white-space: nowrap;"|(3)
+
{| style="width: 80%;margin: 1em auto 0.1em auto;border-collapse: collapse;"
 +
|-
 +
|  style="text-align: center;width: 40%;"|[[File:Sanz-Ramos_et_al_2025a_8408_Fig_4c.png|1600px]]
 +
|  style="text-align: center;width: 45%;"|[[File:Sanz-Ramos_et_al_2025a_2187_Fig_4d.png|1600px]]
 +
|-
 +
|  style="text-align: center;"|(c)
 +
|  style="text-align: center;"|(d)
 
|}
 
|}
 +
<span style="text-align: center; font-size: 75%;">'''Fig. 4. Boundary conditions. (a) Creation of the current scenario. (b) Creation of the timeseries of the inlet conditions. (c) Implementation of the Inlet boundary condition. (d) Implementation of the Outlet boundary condition.'''</span>
  
 +
We are going to reproduce a grate inlet test; thus, we must define it by editing the ‘'''Inlet'''’ layer. '''Start editing''' ([[File:Sanz-Ramos_et_al_2025a_5476_Icon_editing.png|20px]]) and '''create''' ([[File:Sanz-Ramos_et_al_2025a_2130_Icon_create.png|20px]]) the inlet by '''selecting the centroid of the grate inlet surface'''. A Feature Attribute table will appear and we have to fill it by selecting the ‘'''outlet_type'''’ as''' SINK''', a ‘'''top_elev'''’ of '''0 m''', a ‘'''width'''’ of '''0.26 m''', a ‘'''length'''’ of '''0.74 m''', the ‘'''method'''’ as '''W_O''' (i.e., weir/orifice), a ‘'''weir_cd'''’ of '''1.6''', a ‘'''orifice_cd'''’ of '''0.7''', and a ‘'''efficiency'''’ of '''100'''. The rest of parameters by default. Save the changes.
  
<span id='_Hlk164577165'></span>where <math display="inline">n</math> is the Manning coefficient, <math display="inline">v</math> is the flow velocity and <math display="inline">h</math> is the flow depth. It is related to turbulent friction ( <math display="inline">{\tau }_{t}</math>), being utilised by several authors for simulating hyperconcentrated flows [<span id='cite-_Bib019'></span>[[#_Bib019|19]],<span id='cite-_Bib020'></span>[[#_Bib020|20]],<span id='cite-_Bib021'></span>[[#_Bib021|21]],<span id='cite-_Bib022'></span>[[#_Bib022|22]]]. The unique value for calibration is the Manning coefficient ( <math display="inline">n</math>).
+
====3.1.4 Mesh generation====
  
<span id='_Toc176677473'></span><span id='_Toc203976068'></span>
+
The mesh generation is based on the information of ‘Ground’ layer, particularly on its geometry and the ‘cellsize’ field. As we defined previously, the platform has a 0.2 m of element side length while the grate inlet area of 0.1 m. Go to '''Mesh manager''' ([[File:Sanz-Ramos_et_al_2025a_4906_Icon_Mesh.png|20px]]) and create a new one. As the platform is fully horizontal, keep all values by default and press OK (Fig. 5a). If we do so, the mesh generation process will succesfully finish (Fig. 5b) and the computational surface domain will be discretized as shonw in Fig. 5c.
  
====3.2.2 Bingham (simplified)====
+
Once the mesh is generated, the current boundary conditions have been automatically assigned to this mesh. However, the user has the posibility to use any of the boundary conditions scenarios defined in the Boundary condition manager.
  
Since the proposal of the Bingham rheological model [<span id='cite-_Bib023'></span>[[#_Bib023|23]]], several approaches have been introduced to deal with the difficulties on directly obtaining the shear stress proportional to the flow velocity [<span id='cite-_Bib024'></span>[[#_Bib024|24]]]. Assuming an incompressible and homogeneous flow [<span id='cite-_Bib025'></span>[[#_Bib025|25]],<span id='cite-_Bib026'></span>[[#_Bib026|26]]], the following expression for the viscous ( <math display="inline">{\tau }_{v}</math>) and the Mohr–Coulomb ( <math display="inline">{\tau }_{mc}</math>) contributions:
 
  
{| class="formulaSCP" style="width: 100%;margin: 1em auto 0.1em auto;width: 100%;text-align: center;"  
+
{| style="width: 80%;margin: 1em auto 0.1em;border-collapse: collapse;"  
 
|-
 
|-
|  
+
| style="text-align: center;width: 19%;"|[[File:Sanz-Ramos_et_al_2025a_6764_Fig_5a.png|1600px]]
{| style="text-align: center;margin:auto;width: 100%;"
+
| style="text-align: center;width: 19%;"|[[File:Sanz-Ramos_et_al_2025a_4215_Fig_5b.png|1600px]]
 +
|  style="text-align: center;width: 62%;"|[[File:Sanz-Ramos_et_al_2025a_9466_Fig_5c.png|1600px]]
 
|-
 
|-
| <math>{S}_{f}=\frac{1}{\rho gh}\left( \frac{3}{2}{\tau }_{y}+3\frac{{\mu }_{B}v}{h}\right)</math>
+
| style="text-align: center;"|(a)
|}
+
|  style="text-align: center;"|(b)
|  style="text-align: center;width: 5px;text-align: right;white-space: nowrap;"|(4)
+
|  style="text-align: center;"|(c)
 
|}
 
|}
 +
<span style="text-align: center; font-size: 75%;">'''Fig. 5. Mesh generation: (a) definition of the mesh properties; (b) example of error message during the mesh generation; (c) view of the calculation mesh.'''</span>
  
 +
====3.1.5 Run configuration====
  
where <math display="inline">{\tau }_{y}</math> is the yield stress, <math display="inline">\rho</math>  is the fluid density, <math display="inline">h</math> is the flow depth, <math display="inline">{\mu }_{B}</math> is the fluid viscosity, <math display="inline">v</math> is the flow velocity, and <math display="inline">g</math> is the gravitational acceleration.
+
Finally, go to ‘'''Options'''’ button ([[File:Sanz-Ramos_et_al_2025a_8676_Icon_Options.png|20px]]) and configure the time parameters, results visualization and kind of simulation. In '''SWMM OPTIONS''' tab we have to define the ‘'''End time'''’ of '''00:02:00''' for the whole simulation, even if SWMM project is not defined (Fig. 6a). In such cases, Iber will take ‘End time’ as maximum simulation time. Also define a ‘'''Report step'''’ of '''00:00:10'''. In tab '''IBER OPTIONS''' we have to define both writing times equal to 10 s, and the Hydrological process as '''No Rain''' and '''NO LOSSES''' (Fig. 6b). The results configuration ('''IBER RESULTS''') by default except for Raster results options that must be defined with a ‘'''Cell size [m]'''’ of '''0.1''' and a '''Linear interpolation''' (Fig. 6c). Finally, as we do not have a SWMM project, we will simulate the urban drainage model considering only the inlets; thus, in '''IBER PLUGINS''' we must impose '''Only gullies''' (Fig. 6d). Accept the configuration.
  
<span id='_Toc176677474'></span><span id='_Toc203976069'></span>
+
{| style="width: 80%;margin: 1em auto 0.1em;border-collapse: collapse;"  
 
+
====3.2.3 Voellmy====
+
 
+
Voellmy [<span id='cite-_Bib027'></span>[[#_Bib027|27]]] presented a rheological model that considers the turbulent ( <math display="inline">{\tau }_{t}</math>) and the Mohr–Coulomb ( <math display="inline">{\tau }_{mc}</math>) terms as follows:
+
 
+
{| class="formulaSCP" style="width: 100%;margin: 1em auto 0.1em auto;width: 100%;text-align: center;"  
+
 
|-
 
|-
|  
+
| style="text-align: center;width: 45%;"|[[File:Sanz-Ramos_et_al_2025a_9824_Fig_6a.png|1600px]]
{| style="text-align: center;margin:auto;width: 100%;"
+
|  style="text-align: center;width: 45%;"|[[File:Sanz-Ramos_et_al_2025a_1510_Fig_6b.png|1600px]]
 
|-
 
|-
| <math>{S}_{f}=\mu +\frac{{v}^{2}}{\xi h}</math>
+
| style="text-align: center;"|(a)
 +
|  style="text-align: center;"|(b)
 
|}
 
|}
|  style="text-align: center;width: 5px;text-align: right;white-space: nowrap;"|(5)
+
{| style="width: 80%;margin: 1em auto 0.1em;border-collapse: collapse;"
 +
|-
 +
|  style="text-align: center;width: 45%;"|[[File:Sanz-Ramos_et_al_2025a_6568_Fig_6c.png|1600px]]
 +
|  style="text-align: center;width: 45%;"|[[File:Sanz-Ramos_et_al_2025a_3344_Fig_6d.png|1600px]]
 +
|-
 +
|  style="text-align: center;"|(c)
 +
|  style="text-align: center;"|(d)
 
|}
 
|}
 +
<span style="text-align: center; font-size: 75%;">'''Fig. 6. Run configuration: (a) definition of maximum simulation time (SWMM options); (b) Iber options definition; (c) Iber results definition; (d) Iber plugins definition.'''</span>
  
 +
To run the simulation, just click on ‘'''Execute model'''’ button ([[File:Sanz-Ramos_et_al_2025a_8684_Icon_Run.png|20px]]), select the mesh (Mesh1) and the folder where the model will be run. After checking all data, the Iber-SWMM simulation starts. Once the simulation finishes, the plugin asks for loading the results.
  
<span id='_Hlk164436656'></span>where <math display="inline">\xi</math>  is the turbulent friction coefficient, <math display="inline">\mu</math>  is the Coulomb friction coefficient, <math display="inline">h</math> is the flow depth and <math display="inline">v</math> is the flow velocity.
+
===3.1.6 Results visualization===
  
<span id='_Toc176677475'></span><span id='_Toc203976070'></span>
+
The results of the numerical models, SWMM and Iber, can be shown directly in QGIS. In this case, only the 2D results of Iber are available since none sewer network has been simulated through SWMM. Fig. 7 shows the map of flow depth and velocity at the end of the simulation. As expected, the inlet subtracts water from the model surface, affecting the hydrodynamics near the inlet location. The flow accelerates when it approaches to the inlet (Fig. 7b), especially in the X direction (Fig. 7c) while the velocity in the Y direction is almost null except near the inlet.
  
====3.2.4 Bartelt====
+
{| style="width: 80%;margin: 1em auto 0.1em;border-collapse: collapse;"  
 
+
Bartelt et al. [<span id='cite-_Bib028'></span>[[#_Bib028|28]]] developed a new resistance term related to the cohesion, a physical property of the fluid. This rheological model is commonly used together with the Voellmy model, and expresses as follows:
+
 
+
{| class="formulaSCP" style="width: 100%;margin: 1em auto 0.1em auto;width: 100%;text-align: center;"  
+
 
|-
 
|-
|  
+
| style="text-align: center;width: 40%;"|[[File:Sanz-Ramos_et_al_2025a_6546_Fig_7a.png|1600px]]
{| style="text-align: center;margin:auto;width: 100%;"
+
| style="text-align: center;width: 5%;"|[[File:Sanz-Ramos_et_al_2025a_8202_Fig_7aa.png|1600px]]
 +
|  style="text-align: center;width: 40%;"|[[File:Sanz-Ramos_et_al_2025a_4592_Fig_7b.png|1600px]]
 +
|  style="text-align: center;width: 5%;"|[[File:Sanz-Ramos_et_al_2025a_7013_Fig_7bb.png|1600px]]
 
|-
 
|-
| <math>{S}_{f}=\frac{1}{\rho gh}\left( {C}_{B}\, \left( 1-\mu \right) \left( 1-{e}^{-\frac{\rho gh}{{C}_{B}\, }}\right) \right)</math>
+
| style="text-align: center;"|(a)
 +
|  style="text-align: center;"|
 +
|  style="text-align: center;"|(b)
 +
|  style="text-align: center;"|
 
|}
 
|}
|  style="text-align: center;width: 5px;text-align: right;white-space: nowrap;"|(6)
+
{| style="width: 80%;margin: 1em auto 0.1em;border-collapse: collapse;"
 +
|-
 +
|  style="text-align: center;width: 40%;"|[[File:Sanz-Ramos_et_al_2025a_7344_Fig_7c.png|1600px]]
 +
|  style="text-align: center;width: 5%;"|[[File:Sanz-Ramos_et_al_2025a_9148_Fig_7cc.png|1600px]]
 +
|  style="text-align: center;width: 40%;"|[[File:Sanz-Ramos_et_al_2025a_2218_Fig_7d.png|1600px]]
 +
|  style="text-align: center;width: 5%;"|[[File:Sanz-Ramos_et_al_2025a_4909_Fig_7dd.png|1600px]]
 +
|-
 +
|  style="text-align: center;"|(c)
 +
|  style="text-align: center;"|
 +
|  style="text-align: center;"|(d)
 +
|  style="text-align: center;"|
 
|}
 
|}
 +
<span style="text-align: center; font-size: 75%;">'''Fig. 7. Results at the end of the simulation: (a) flow depth; (b) flow velocity (modulus); (c) flow velocity in the X direction; (d) flow velocity in the Y direction.'''</span>
  
 +
==3.2 Laboratory case: 'El Barrio' ==
  
where <math display="inline">\rho</math>  is the fluid density, <math display="inline">g</math> is the gravitational acceleration, <math display="inline">h</math> is the flow depth, <math display="inline">{C}_{B}\,</math> is the cohesion, and <math display="inline">\mu</math> is the Coulomb friction coefficient.
+
This exercise will numerically replicate the Scientific Platform for Urban Runoff Testing located at the Center for Technological Innovation in Building and Civil Engineering (CITEEC) of the University of A Coruña. The experimental platform represents a perpendicular intersection of two streets and has a flat area of approximately 100 m<sup>2</sup>. The surface is connected to a drainage network consisting of four manholes, four pipes, one outlet point, and four inlets. It also has four ceramic tile roofs with variable slopes. Further information can be found in [<span id='cite-_Bib001'></span>[[#_Bib001|1]],<span id='cite-_Bib018'></span>[[#_Bib018|18-20]]].
  
<span id='_Toc203976071'></span>
+
===3.2.1 Data===
  
====3.2.5 Dilatant====
+
The model will be build-up using the tools developed ad-hoc to facilitate the whole process. To that end, the following geometric entities are provided:
  
<span id='_Hlk164577197'></span>Similarly to the Manning rheological models, and considering constant sediment concentration and uniform flow, Macedonio and Pareschi [<span id='cite-_Bib029'></span>[[#_Bib029|29]]] derived the following expression: <math display="inline">\tau =</math><math>{\tau }_{y}+{\mu }_{1}{\left( \frac{dv}{dz}\right) }^{\alpha }</math>, where <math display="inline">{\tau }_{y}</math> is the yield stress, <math display="inline">{\mu }_{1}</math> is a proportionality coefficient and <math display="inline">\alpha</math>  is the flow behaviour index.
+
* GROUND_layer (shapefile)
 +
* ROOF_layer (shapefile)
 +
* INLETS_layer (shapefile)
 +
* SWMM (*.ini and *inp)
 +
* DEM (raster)
 +
* Rainfall (text)
  
When <math display="inline">\alpha</math>  = 2 a dilatant flow behaviour is expected:
 
  
{| class="formulaSCP" style="width: 100%;margin: 1em auto 0.1em auto;width: 100%;text-align: center;"
+
Each shapefile contains the database (*.dbf) with all data needed to compile the ‘Ground, ‘Roof’ and ‘Inlet’ layers. The SWMM model is also prepared and contains the sewer network information. The digital elevation model (DEM) is a raster file with ~4.4 cm pixel-size resolution, and represents the topography of the laboratory facility.
|-
+
 
|
+
===3.2.2 Model build-up===
{| style="text-align: center;margin:auto;width: 100%;"
+
 
 +
Once opened QGIS, load the IberGIS plugin by clicking on the icon [[File:Sanz-Ramos_et_al_2025a_2183_Icon_Iber.png|20px]], and the model generation window will appear (Fig. 8). Please, '''enter the name of the model''' (GPKG Name) and a description. Then, define the location and the coordinate system using the Spatial Reference System Identifier (SRID), in this case '''25830'''.
 +
 
 +
{| style="width: 80%;margin: 1em auto 0.1em auto;border-collapse: collapse;"  
 
|-
 
|-
| <math>{S}_{f}=\frac{{n}^{2}{v}^{2}}{{h}^{3}}</math>
+
|  style="text-align: center;width: 50%;"|[[File:Sanz-Ramos_et_al_2025a_7860_Fig_8.png|800px]]
|}
+
|  style="text-align: center;width: 5px;text-align: right;white-space: nowrap;"|(7)
+
 
|}
 
|}
 +
<span style="text-align: center; font-size: 75%;">'''Fig. 8. Model generation window. Create a new model or use the Example data model.'''</span>
  
 +
After a few seconds, the geopackage is generated with all features to build-up the model. First, we are going to '''import the SWMM model''' using the button “Import INP” ([[File:Sanz-Ramos_et_al_2025a_1547_Icon_SWMM.png|20px]]). The importation process of the SWMM model is automatic, and no user interaction is required.
  
<span id='_Hlk164576691'></span><span id='_Toc203976072'></span>
+
Then, we are going to import the ‘Ground’, ‘Roof’ and ‘Inlet’ layers through the “IberGIS” tools of the Processing Toolbox. In contrast with the SWMM file, to load the file of the geometric entities that define the two-dimensional computational domain, the user might select some fields to be imported to particular fields of the target file. To import the ‘'''Ground'''’ layer, go to '''Processing Toolbox >> IberGIS > Import Ground Geometries''', select ‘GROUND_layer’ and define the correspondence of the original to the target database (Fig. 9a). To facilitate this process, similar field names are used in the original file.
  
====3.2.6 Viscous====
+
Continue with the ‘'''ROOF_layer'''’ through '''Processing Toolbox >> IberGIS > Import Roof Geometries''', and define the correspondence of the original to the target database (Fig. 9b). It is important to highlight that if the field ‘outlet_code’ is used it must be properly defined according to the ‘custom_code’ of the ‘Junction’ layer of SWMM.
  
Macedonio and Pareschi [<span id='cite-_Bib029'></span>[[#_Bib029|29]]] also presented the application of the Manning equation to viscous flows by particularizing the parameter <math display="inline">\alpha</math>  = 1. This allows for the representation of viscous flows:
+
Finally, we import the ‘'''INLET_layer'''’ using the menu '''Processing Toolbox >> IberGIS > Import Inlet Geometries''' (Fig. 9c). It is worth noticing the target layer must be the one called ‘Inlet’ stored in the group ‘IBER’. Here we have to define properly the fields correspondence (similar field names are used in the original file).
  
{| class="formulaSCP" style="width: 100%;margin: 1em auto 0.1em auto;width: 100%;text-align: center;"  
+
The result of these importation process is show in Fig. 9d. The computational domain is defined by a ground layer (grey polygon), a roof layer (ochre polygon), a inlets layer (yellow points), and the sewer network defined by junctions (blue points), conduits (blue lines) and an outfall (blue triangle).
 +
 
 +
 
 +
{| style="width: 80%;margin: 1em auto 0.1em;border-collapse: collapse;"  
 
|-
 
|-
|  
+
| style="text-align: center;width: 33%;"|[[File:Sanz-Ramos_et_al_2025a_3137_Fig_9a.png|1600px]]
{| style="text-align: center;margin:auto;width: 100%;"
+
| style="text-align: center;width: 33%;"|[[File:Sanz-Ramos_et_al_2025a_5243_Fig_9b.png|1600px]]
 +
|  style="text-align: center;width: 33%;"|[[File:Sanz-Ramos_et_al_2025a_1482_Fig_9c.png|1600px]]
 
|-
 
|-
| <math>{S}_{f}=\frac{{n}^{2}v}{{h}^{2}}</math>
+
| style="text-align: center;"|(a)
 +
|  style="text-align: center;"|(b)
 +
|  style="text-align: center;"|(c)
 
|}
 
|}
|  style="text-align: center;width: 5px;text-align: right;white-space: nowrap;"|(8)
+
{| style="width: 80%;margin: 1em auto 0.1em;border-collapse: collapse;"
 +
|-
 +
|  style="text-align: center;width: 100%;"|[[File:Sanz-Ramos_et_al_2025a_1012_Fig_9d.png|1600px]]
 +
|-
 +
|  style="text-align: center;"|(d)
 
|}
 
|}
 +
<span style="text-align: center; font-size: 75%;">'''Fig. 9. Generating the model domain. (a) Import ‘Ground’ layer window. (b) Import ‘Roof’ layer window. (c) Import ‘Inlet’ layer window. (d) Model domain after the importation process.'''</span>
  
 +
===3.2.3 Hydraulic and hydrological conditions===
  
<span id='_Hlk164576879'></span><span id='_Toc203976073'></span>
+
In this facility, the water enters from a rainfall simulator [18–20]. So, we have to define a hyetograph as a time series using the '''Non visual objects manager''' button [[File:Sanz-Ramos_et_al_2025a_2557_Icon_TS.png|20px]]. Here, we have first to create a Timeseries and, then, introduce the hyetograph provided in the models data (Rainfall.txt). Fig. 10a shows how to create the Timeseries and the configuration to define the hyetograph. Notice a hyetograph is defined as a constant rainfall (in mm/h) from the time when the rainfall value is first defined to the next time; thus, the last row is set as 0 mm/h to force the rain to stop. Otherwise, a constant rainfall intensity will be considered till the end of the simulation. Once the timeseries is defined, we have to create the ‘Hyetograph’ using the common tools of QGIS: select the ‘Hyetograph’ layer, enable the edition ([[File:Sanz-Ramos_et_al_2025a_9421_Icon_editing.png|20px]]), and create a new one ([[File:Sanz-Ramos_et_al_2025a_2130_Icon_create.png|20px]]) by clicking in the workspace. Immediately it will appear the attribute table creation window where we have only to select the timeseries (called “Rain”). A star-shaped icon ([[File:Sanz-Ramos_et_al_2025a_8055_Icon_Hyeto.png|20px]]) will appear indicating there is a hyetograph defined. Notice, if a unique hyetograph is defined in the model, Iber assumes uniform rainfall over the whole computational domain; whereas, if more the one hyetographs are defined, Iber uses the Thiessen polygons method [<span id='cite-_Bib021'></span>[[#_Bib021|1]],<span id='cite-_Bib022'></span>[[#_Bib022|22]]] to distribute spatially the rainfall according to each hyetograph.
  
====3.2.7 O’Brien====
+
The unique boundary condition needed is an outlet located at the east of the model. To implement it, go to '''Boundary conditions manager''' ([[File:Sanz-Ramos_et_al_2025a_1523_Icon_BCM.png|20px]]), create a new (Fig. 10b) one and assign as ‘Current scenario’. The manager window allows to store different inlet and outlet boundary conditions per scenario using the same ‘idval’ code. The definition of the outlet condition is carried out through the button '''Create boundary condition''' ([[File:Sanz-Ramos_et_al_2025a_7568_Icon_BC.png|20px]]). There we have to 1) select the line or lines that define de boundary conditions and 2) select the ‘Boundary type’ as “2D Outlet” with a “Supercritical/Critical” regime (Fig. 10c). This condition is saved in the layer ‘Boundary conditions’, which is stored in the group called ‘IBER’. It is important to highlight that any boundary condition must be implemented over a line of ‘Ground’ layer that belongs to a real boundary of the model. Hence, lines in contact with ‘Roof’ layer or inner lines must not be added as boundary condition. Abnormal results will appear in such case.
  
On the other hand, O’Brien and Julien [<span id='cite-_Bib030'></span>[[#_Bib030|30]]] derived an expression for the representation of the shear stress of mudflows, being a quadratic equation that integrates the Mohr–Coulomb term ( <math display="inline">{\tau }_{mc}</math>), the viscous term ( <math display="inline">{\tau }_{v}</math>) and the turbulent term ( <math display="inline">{\tau }_{t}</math>) as follows:
+
{| style="width: 80%;margin: 1em auto 0.1em;border-collapse: collapse;"  
 
+
{| class="formulaSCP" style="width: 100%;margin: 1em auto 0.1em auto;width: 100%;text-align: center;"  
+
 
|-
 
|-
|  
+
| style="text-align: center;width: 30%;"|[[File:Sanz-Ramos_et_al_2025a_3560_Fig_10a.png|1600px]]
{| style="text-align: center;margin:auto;width: 100%;"
+
| style="text-align: center;width: 39%;"|[[File:Sanz-Ramos_et_al_2025a_2383_Fig_10b.png|1600px]]
 +
|  style="text-align: center;width: 20%;"|[[File:Sanz-Ramos_et_al_2025a_6657_Fig_10c.png|1600px]]
 
|-
 
|-
| <math>{S}_{f}=\frac{{\tau }_{y}}{\rho gh}+\frac{K{\mu }_{B}v}{8\rho g{h}^{2}}+\frac{{n}^{2}{v}^{2}}{{h}^{\frac{4}{3}}}</math>
+
| style="text-align: center;"|(a)
|}
+
|  style="text-align: center;"|(b)
|  style="text-align: center;width: 5px;text-align: right;white-space: nowrap;"|(9)
+
|  style="text-align: center;"|(c)
 
|}
 
|}
 +
<span style="text-align: center; font-size: 75%;">'''Fig. 10. (a) Definition of a hyetograph as a timeseries. (b) Definition of a boundary condition. (c) Boundary condition creation window.'''</span>
  
 +
===3.2.4 Mesh generation===
  
<span id='_Hlk164577448'></span>where <math display="inline">{\tau }_{y}</math> is the yield stress, <math display="inline">\rho</math>  is the fluid density, <math display="inline">g</math> is the gravitational acceleration, <math display="inline">h</math> is the flow depth, <math display="inline">K</math> is a resistance parameter, <math display="inline">{\mu }_{B}</math> is the flow viscosity, <math display="inline">v</math> is the flow velocity, and <math display="inline">n</math> is the Manning coefficient.
+
The meshing process must be always done in the latest step, once all model conditions are implemented. This case requires the utilisation of a digital elevation model (DEM), that we have to load using the common tools of QGIS ('''Layer >> Add Layer >> Add Raster Layer'''). We recommend to add the file '''surface_DEM.tiff''' into ‘BASE MAP’ group.
  
<span id='_Toc203976074'></span>
+
The mesh creation is carried out through the '''Mesh manager''' button ([[File:Sanz-Ramos_et_al_2025a_4906_Icon_Mesh.png|20px]]). There, the user can store different mesh configurations according to the mesh size defined in the field ‘cellsize’ of the ‘Ground’ layer, in combination with different boundary condition scenarios (Fig. 11a). In this case, the ‘cellsize’ is already defined as 0.1 m in ‘Ground’ layer; so, we have only to create it selecting the ‘'''surface_DEM'''’ raster layer in the Elevation section (Fig. 11b). We have also introduce a mesh name (“Mesh”), without spaces. The rest of parameters, by default (uncheck all Input data if it is checked). Press ‘Ok’ and the mesh will be generated (Fig. 11c) showing, besides the elements view for ‘Ground’ and ‘Roof’ layers, some information about the properties of the mesh (area and wrong normal).
  
====3.2.8 Herschel-Bulkley====
+
Finally, we have to assign the boundary condition scenario to this mesh. To do so, we have to open again the '''Boundary conditions manager''', select the scenario and ‘'''Save to mesh'''’ selecting Mesh1.
  
The formulation of Herschel and Bulkley [<span id='cite-_Bib031'></span>[[#_Bib031|31]]] is a generalization of various expressions in which, depending on the value of the coefficient <math display="inline">\alpha</math> , dilatant, viscous, plastic, etc. behaviours can be derived. This formula follows the following expression:
+
{| style="width: 80%;margin: 1em auto 0.1em;border-collapse: collapse;"  
 
+
{| class="formulaSCP" style="width: 100%;margin: 1em auto 0.1em auto;width: 100%;text-align: center;"  
+
 
|-
 
|-
|  
+
| style="text-align: center;width: 70%;"|[[File:Sanz-Ramos_et_al_2025a_5779_Fig_11b.png|1600px]]
{| style="text-align: center;margin:auto;width: 100%;"
+
|  style="text-align: center;width: 30%;"|[[File:Sanz-Ramos_et_al_2025a_1286_Fig_11a.png|1600px]]
 
|-
 
|-
| <math>{S}_{f}=\frac{1}{\rho gh}\left( {\tau }_{y}+k{\left( \frac{v}{h}\right) }^{\alpha }\right)</math>
+
| style="text-align: center;"|(a)
 +
|  style="text-align: center;"|(b)
 
|}
 
|}
|  style="text-align: center;width: 5px;text-align: right;white-space: nowrap;"|(10)
+
{| style="width: 80%;margin: 1em auto 0.1em;border-collapse: collapse;"
 +
|-
 +
|  style="text-align: center;width: 50%;"|[[File:Sanz-Ramos_et_al_2025a_8097_Fig_11c.png|1600px]]
 +
|-
 +
|  style="text-align: center;"|(c)
 
|}
 
|}
 +
<span style="text-align: center; font-size: 75%;">'''Fig. 11. (a) Mesh properties. (b) Mesh manager window. (c) View of the computational mesh.'''</span>
  
 +
===3.2.5 Run configuration===
  
where <math display="inline">{\tau }_{y}</math> is the yield stress, <math display="inline">\rho</math>  is the fluid density, <math display="inline">g</math> is the gravitational acceleration, <math display="inline">h</math> is the flow depth, <math display="inline">k</math> is a consistency parameter, and <math display="inline">v</math> is the flow velocity.
+
The model is almost ready to be simulated. Go to ‘'''Options'''’ button ([[File:Sanz-Ramos_et_al_2025a_9023_Iber_Options.png|20px]]) and configure the time parameters and results visualization. In '''SWMM OPTIONS''' tab (Fig. 12a) define the '''Report step''' (10 s) and '''End time''' (10 min). These values are mandatory and controls the maximum simulation time and the reporting results of SWMM. In '''IBER OPTIONS''' tab (Fig. 12b) we have to define the Results 2D time interval (10 s, the value as per SWMM results report) and the Timeseries time interval (10 s, not mandatory). Additionally, we have to activate the Hydrological process module of Iber by enabling '''Precipitation''' process (select ‘Hyetograph’ as rainfall type) and, in this case, disable '''Losses method''' (‘NO LOSSES’) as the laboratory facility is impervious. The rest of parameters, by default. Finally, in '''IBER RESULTS''' tab we have to enable '''Raster results''' as ‘'''Linear interpolation'''’ with a raster cell size of '''0.1 m'''. Keep the rest of parameters by default and Accept the changes.
  
<span id='_Toc203976075'></span>
+
{| style="width: 80%;margin: 1em auto 0.1em auto;border-collapse: collapse;"  
 
+
===3.3 Entrainment===
+
 
+
The entrainment is a relevant phenomenon in non-Newtonian flow dynamic modelling because the shear stress between the moving fluid and the terrain generally erode the bottom. This eroded material is then aggregated to the bulk, and might affect it properties (e.g., fluid density) and behaviour.
+
 
+
The effects of entrainment extend beyond altering mass and energy balances. Predicted velocities along the bulk path and the kinetic energy upon reaching the runout zone are also affected. These changes directly influence runout distances and have substantial implications for hazard and risk mapping. Particularly for snow avalanche modelling, entrainment leads to higher predicted flow heights and volumes of avalanches [<span id='cite-_Bib015'></span>[[#_Bib015|15]],<span id='cite-_Bib032'></span>[[#_Bib032|32]],<span id='cite-_Bib033'></span>[[#_Bib033|33]],<span id='cite-_Bib034'></span>[[#_Bib034|34]],<span id='cite-_Bib035'></span>[[#_Bib035|35]]].
+
 
+
Accurate predictions are crucial for designing infrastructure, such as barriers or dams, as incorrect estimations may result in inadequate protection or increased costs. Therefore, precise consideration of entrainment is essential for determining runout distances and optimizing infrastructure design to mitigate hazards effectively.
+
 
+
<span id='_Toc203976076'></span>
+
 
+
====3.3.1 Velocity model====
+
 
+
This is a simple model that considers mass entrainment as function of the flow velocity. In contrast with another popular model, Iber-NNF considers entrainment when the flow velocity is greater than a threshold ( <math display="inline">{u}_{crit}</math>).
+
 
+
{| class="formulaSCP" style="width: 100%;margin: 1em auto 0.1em auto;width: 100%;text-align: center;"  
+
 
|-
 
|-
|  
+
| style="text-align: center;width: 33%;"|[[File:Sanz-Ramos_et_al_2025a_6768_Fig_12a.png|1600px]]
{| style="text-align: center;margin:auto;width: 100%;"
+
| style="text-align: center;width: 33%;"|[[File:Sanz-Ramos_et_al_2025a_4191_Fig_12b.png|1600px]]
 +
|  style="text-align: center;width: 33%;"|[[File:Sanz-Ramos_et_al_2025a_4699_Fig_12c.png|1600px]]
 
|-
 
|-
| <math>E=\left\{ \begin{matrix}0\, \\{K}_{u}\left( u-{u}_{crit}\right) \end{matrix}\begin{matrix}\\\end{matrix}\begin{matrix}when\, u\leq {u}_{crit}\\when\, u>{u}_{crit}\end{matrix}\right.</math>
+
| style="text-align: center;"|(a)
 +
|  style="text-align: center;"|(b)
 +
|  style="text-align: center;"|(c)
 
|}
 
|}
style="text-align: center;width: 5px;text-align: right;white-space: nowrap;"|(11)
+
<span style="text-align: center; font-size: 75%;">'''Fig. 12. Go2Iber options windows: (a) SWMM options definition. (b) Iber options definition. (c) Iber results definition.'''</span>
|}
+
 
+
 
+
where <math display="inline">{K}_{u}</math> is the entrainment rate, which commonly range from 5 to 40·10<sup>-5</sup>.
+
  
<span id='_Toc203976077'></span>
+
To run the simulation, just click on ‘'''Execute model'''’ button ([[File:Sanz-Ramos_et_al_2025a_8684_Icon_Run.png|20px]]), select the mesh (Mesh1) and the folder where the model will be run. After checking all data, the Iber-SWMM simulation starts. Once the simulation finish, the plugin asks for loading the results.
  
====3.3.2 Height model====
+
===3.2.6 Results visualization===
  
In this model, the entrainment depends on the load of the underlying snow cover as long as its height reaches a fixed minimum value ( <math display="inline">{h}_{crit}</math>); otherwise, the entrainment will be considered inexistent [<span id='cite-_Bib015'></span>[[#_Bib015|15]]]. This model also integrates an upper limit for the height based on the dry friction law to avoid the dry friction increasing limitless [<span id='cite-_Bib036'></span>[[#_Bib036|36]]]:
+
The results of the two numerical models, SWMM and Iber, can be shown directly in QGIS. First, the surface results are loaded automatically when the simulation ends. Fig. 13 shows the maximums values of the flow depth and velocity at the end of the simulation. We can observe how the topography plays an important role in the rainfall-runoff and flow propagation hydrodynamics; in this case, the flow tends to accumulate on the norther part of the main street as it commonly occurs in the cities due to the transversal slope of the streets. Major velocities are observed near the inlets, as we observed in the previous case.
  
{| class="formulaSCP" style="width: 100%;margin: 1em auto 0.1em auto;width: 100%;text-align: center;"  
+
{| style="width: 80%;margin: 1em auto 0.1em auto;border-collapse: collapse;"  
 
|-
 
|-
|  
+
| style="text-align: center;width: 80%;"|[[File:Sanz-Ramos_et_al_2025a_7596_Fig_13a.png|1600px]]
{| style="text-align: center;margin:auto;width: 100%;"
+
|  style="text-align: center;width: 10%;"|[[File:Sanz-Ramos_et_al_2025a_9294_Fig_13aa.png|1600px]]
 
|-
 
|-
| <math>E=\left\{ \begin{matrix}0&&when\, h\leq {h}_{crit}\\{K}_{h}\left( h-{h}_{crit}\right) &&when\, {h}_{crit}<h<{h}_{lim}\\{K}_{h}{h}_{lim}&&when\, h\geq {h}_{lim}\end{matrix}\right.</math>
+
| style="text-align: center;"|(a)
 +
|  style="text-align: center;"|
 
|}
 
|}
|  style="text-align: center;width: 5px;text-align: right;white-space: nowrap;"|(12)
+
{| style="width: 80%;margin: 1em auto 0.1em auto;border-collapse: collapse;"
 +
|-
 +
|  style="text-align: center;width: 80%;"|[[File:Sanz-Ramos_et_al_2025a_4065_Fig_13b.png|1600px]]
 +
|  style="text-align: center;width: 10%;"|[[File:Sanz-Ramos_et_al_2025a_3111_Fig_13bb.png|1600px]]
 +
|-
 +
|  style="text-align: center;"|(b)
 +
|  style="text-align: center;"|
 
|}
 
|}
 +
<span style="text-align: center; font-size: 75%;">'''Fig. 13. Results of maximums at the end of the simulation: (a) flow depth; (b) flow velocity (modulus).'''</span>
  
 +
The results of SWMM can be loaded, as well as the Iber ones, by the button ‘Results’ ([[File:Sanz-Ramos_et_al_2025a_5527_Icon_Results.png|20px]]). Particularly, we are going to '''generate a profile along the sewer network conduits'''. To do so, a new window appear to select the nodes, the kind of offset (by depth or elevation) and the time limits (Fig. 14a). '''Choose the nodes''' ([[File:Sanz-Ramos_et_al_2025a_4736_Icon_Nodes.png|20px]]), the offset by '''Depth''' and the '''time limits''' as shown in Fig. 14a. Then, once ‘Draw profile’ button is pressed, the profile will appear allowing some editing and the exportation of the figure (Fig. 14b). Additionally, this figure is dynamic and the profile can evolve along the time.
  
where <math display="inline">{K}_{u}</math> is the entrainment rate, which commonly range from 1 to 8·10<sup>-3</sup> s<sup>-1</sup>, and <math display="inline">{h}_{lim}</math> being the maximum avalanche flux height at which yielding at the basal surface occurs:
+
{| style="width: 80%;margin: 1em auto 0.1em auto;border-collapse: collapse;"  
 
+
{| class="formulaSCP" style="width: 100%;margin: 1em auto 0.1em auto;width: 100%;text-align: center;"  
+
 
|-
 
|-
|  
+
| style="text-align: center;width: 41%;"|[[File:Sanz-Ramos_et_al_2025a_4984_Fig_14a.png|1600px]]
{| style="text-align: center;margin:auto;width: 100%;"
+
|  style="text-align: center;width: 50%;"|[[File:Sanz-Ramos_et_al_2025a_5353_Fig_14b.png|1600px]]
 
|-
 
|-
| <math>{h}_{lim}=\frac{{\tau }_{lim}}{\mu \rho g\mathrm{cos}\,\theta }</math>
+
|  style="text-align: center;"|(a)
|}
+
|  style="text-align: center;"|(b)
|  style="text-align: center;width: 5px;text-align: right;white-space: nowrap;"|(13)
+
 
|}
 
|}
 +
<span style="text-align: center; font-size: 75%;">'''Fig. 14. Profile results: (a) configuration windows; (b) profile from J4 to J1 node at 00:05:10.'''</span>
  
 +
==3.3 Real case: synthetic rainfall==
  
<span id='_Toc203976078'></span>
+
The last case aims of showing the performance of IberGIS at neighbourhood scale. It represents a particular zone of Sant Boi de Llobregat, a small town near Barcelona city (Spain). It has an area of ~32.5 ha and a sewer network composed by 66 junctions, 74 conduits and 4 outlets. The connection between the surface and subsurface systems is done by 103 inlets. The sewer network, inlets and roof properties, as well as the hydrological data, have been adapted looking for academic purposes.
  
====3.3.3 Squared velocity model====
+
===3.3.1 Data===
  
This equation is similar to the velocity model although the entrainment rate is considered to vary with the squared velocity of the avalanche [<span id='cite-_Bib015'></span>[[#_Bib015|15]]]:
+
This case is provided in IberGIS as Example data. Thus, '''all data is provided within the geopackage of the Example data'''.
  
{| class="formulaSCP" style="width: 100%;margin: 1em auto 0.1em auto;width: 100%;text-align: center;"  
+
===3.3.2 Model build-up===
 +
 
 +
Open QGIS and load the IberGIS plugin by clicking on the icon [[File:Sanz-Ramos_et_al_2025a_2183_Icon_Iber.png|20px]]. The model generation window will appear (Fig. 15). Please, '''select Example data and enter the model name''' (GPKG Name) and a description. The location and the coordinate system using the Spatial Reference System Identifier (SRID) is defined automatically (25831, Catalonia, Spain).
 +
 
 +
{| style="width: 80%;margin: 1em auto 0.1em auto;border-collapse: collapse;"  
 
|-
 
|-
|  
+
| style="text-align: center;width: 45%;"|[[File:Sanz-Ramos_et_al_2025a_8713_Fig_15a.png|1600px]]
{| style="text-align: center;margin:auto;width: 100%;"
+
|  style="text-align: center;width: 45%;"|[[File:Sanz-Ramos_et_al_2025a_1272_Fig_15b.png|1600px]]
 
|-
 
|-
| <math>E=\left\{ \begin{matrix}0\, \\{K}_{u}^{2}\left( {u}^{2}-{u}_{crit}^{2}\right) \end{matrix}\begin{matrix}\\\end{matrix}\begin{matrix}when\, {u}^{2}\leq {u}_{crit}^{2}\\when\, {u}^{2}>{u}_{crit}^{2}\end{matrix}\right.</math>
+
| style="text-align: center;"|(a)
 +
|  style="text-align: center;"|(b)
 
|}
 
|}
|  style="text-align: center;width: 5px;text-align: right;white-space: nowrap;"|(14)
+
{| style="width: 80%;margin: 1em auto 0.1em auto;border-collapse: collapse;"
 +
|-
 +
|  style="text-align: center;width: 50%;"|[[File:Sanz-Ramos_et_al_2025a_3892_Fig_15c.png|1600px]]
 +
|-
 +
|  style="text-align: center;"|(c)
 
|}
 
|}
 +
<span style="text-align: center; font-size: 75%;">'''Fig. 15. Model generation window: (a) use the Example data model; (b) load the geopackage. (c) General view of the study area.'''</span>
  
 +
The unique data provided is the '''digital terrain model''' (DTM) of the study area generated by the Cartographic and Geologic Institute of Catalonia [<span id='cite-_Bib023'></span>[[#_Bib023|23]]], a 2 m-size raster file that covers the entire computational domain. We can '''load it''' anywhere ([[File:Sanz-Ramos_et_al_2025a_4860_Icon_Raster.png|20px]]), but we recommend to use the '''BASE MAP layer''', below the layer OSM Standard (Fig. 15c).
  
where <math display="inline">{K}_{u}^{2}</math> is the entrainment rate, which commonly range from 4 to 32·10<sup>-6</sup>.
+
===3.3.3 Hydraulic and hydrological conditions===
  
<span id='_Toc203976079'></span>
+
Despite the model is ready to run, we are going to check all data, conditions and options. The model is already defined and the essential data of SWMM, IBER and MESH layers are included. If we open the attribute table of ‘'''Ground'''’ layer, we can observe that the '''cellsize''' is set to 10 m. Since the DTM has a resolution of '''2 m''', we can use this cellsize value instead. So, enable editing ([[File:Sanz-Ramos_et_al_2025a_4412_Icon_editing.png|20px]]) and use the field calculator ([[File:Sanz-Ramos_et_al_2025a_3592_Icon_calculator.png|20px]]) to update this parameter for the whole entities of this layer. We also modify the ‘'''scs_cn'''’ parameter to '''90''' (Fig. 16a).
  
====3.3.4 Bed shear stress model====
+
It is worth noticing that in ‘Ground’ layer there are two related fields: ‘landuse’ and ‘custom_roughness’ (Fig. 16a). If a real value is defined in ‘custom_roughness’, it will be used as Manning coefficient instead of the values defined in the layer ‘Landuses’ of the IBER group. We can also use a raster of Manning coefficient values if the user select it during the mesh generation process.
  
Similar to how the sediment transport is computed, a new equation to calculate the entrainment as a function of the bed shear stress between the lower snow layer and the avalanche:
+
The ‘'''Roof'''’ layer shows relevant information about the roof properties (Fig. 16b), such as the slope, width, roughness, percentage of spilled volume to street, sewer or infiltrates, and what kind of connection have (isconnected: 1, 100% connected; 2, partially connected; 3, disconnected). Keep this layer by default.
  
{| class="formulaSCP" style="width: 100%;margin: 1em auto 0.1em auto;width: 100%;text-align: center;"  
+
The ‘'''Inlet'''’ layer also contains all the information of the inlets (Fig. 16c). It is worth noticing that the ‘'''outlet_type'''’ is set as '''TO NETWORK''' for all inlets because we are going to simulate the complete network. Also, ‘outlet_node’ is set using the same name as the ‘'''code'''’ field of the ‘'''Junction'''’ layer (Fig. 16d). As we can observe, more than one inlet can be connected to a one junction. Keep these layers by default.
 +
 
 +
 
 +
{| style="width: 80%;margin: 1em auto 0.1em auto;border-collapse: collapse;"  
 
|-
 
|-
|  
+
| style="text-align: center;width: 50%;"|[[File:Sanz-Ramos_et_al_2025a_1231_Fig_16a.png|1600px]]
{| style="text-align: center;margin:auto;width: 100%;"
+
 
|-
 
|-
| <math>E=\left\{ \begin{matrix}0\, \\{K}_{\tau }\left( \tau -{\tau }_{crit}\right) \end{matrix}\begin{matrix}\\\end{matrix}\begin{matrix}when\, \tau \leq {\tau }_{crit}\\when\, \tau >{\tau }_{crit}\end{matrix}\right.</math>
+
| style="text-align: center;"|(a)
 
|}
 
|}
|  style="text-align: center;width: 5px;text-align: right;white-space: nowrap;"|(15)
+
{| style="width: 80%;margin: 1em auto 0.1em auto;border-collapse: collapse;"
 +
|-
 +
|  style="text-align: center;width: 50%;"|[[File:Sanz-Ramos_et_al_2025a_2120_Fig_16b.png|1600px]]
 +
|-
 +
|  style="text-align: center;"|(b)
 
|}
 
|}
 +
{| style="width: 80%;margin: 1em auto 0.1em auto;border-collapse: collapse;"
 +
|-
 +
|  style="text-align: center;width: 50%;"|[[File:Sanz-Ramos_et_al_2025a_4384_Fig_16c.png|1600px]]
 +
|-
 +
|  style="text-align: center;"|(c)
 +
|}
 +
{| style="width: 80%;margin: 1em auto 0.1em auto;border-collapse: collapse;"
 +
|-
 +
|  style="text-align: center;width: 50%;"|[[File:Sanz-Ramos_et_al_2025a_2108_Fig_16d.png|1600px]]
 +
|-
 +
|  style="text-align: center;"|(d)
 +
|}
 +
<span style="text-align: center; font-size: 75%;">'''Fig. 16. Attribute tables: (a) ‘Ground’ layer; (b) ‘Roof’ layer; (c) ‘Inlet’ layer; (d) ‘Junction’ layer.'''</span>
 +
 +
Keep the rest of layers by default, although we encourage to have a look on it. For example, if we open the ‘'''Hyetograph'''’ layer ([[File:Sanz-Ramos_et_al_2025a_8055_Icon_Hyeto.png|20px]], we can check that there is a ‘'''timeseries'''’ called '''T5-5m''' selected. Check in '''Non visual object manager''' ([[File:Sanz-Ramos_et_al_2025a_2557_Icon_TS.png|20px]]) the values of this hyetograph, with a maximum rainfall intensity of 8.75 mm/h. '''Modify this hyetograph''' by  adding an extra row at the end (01:00) with none intensity (0 mm/h) to indicate that the rainfall event ends.
 +
 +
We can also check the kind of ‘'''Boundary conditions'''’ showing the attribute table of this layer: two outlet conditions have been assigned to two lines located at north (Fig. 15c). We can edit or add more editing this layer by using the button '''Create boundary condition''' ([[File:Sanz-Ramos_et_al_2025a_7568_Icon_BC.png|20px]]).
 +
 +
===3.3.4 Mesh generation===
  
 +
We are going to generate a mesh (e.g., called Mesh1) using the default values of the '''Mesh manager''' button ([[File:Sanz-Ramos_et_al_2025a_4906_Icon_Mesh.png|20px]]). We have to select the DTM raster as the elevation file for the 'Ground' layer. The rest of parameters by default.
  
where <math display="inline">{K}_{\tau }</math> is the entrainment rate, which a range from 1.5 to 12·10<sup>-6</sup> m·s<sup>-1</sup>·Pa<sup>-1</sup> is proposed [<span id='cite-_Bib016'></span>[[#_Bib016|16]]].
+
===3.3.5 Run configuration===
  
<span id='_Toc203976080'></span>
+
The model is ready to be simulated, so we can run the simulation immediately. However, we have to check the ‘'''Options'''’ ([[File:Sanz-Ramos_et_al_2025a_9023_Iber_Options.png|20px]]) and see what configuration will be used. In '''SWMM OPTIONS''' tab the '''Report step''' is set as 5 min and the End time at 3 h. In '''IBER OPTIONS''' tab we have to define the Precipitation as Hyetograph and '''Losses method as SCS'''. Finally, in '''IBER RESULTS''' tab we have to enable '''Raster results''' as ‘'''Linear interpolation'''’ with a raster '''cell size of 2 m'''. We are going to simulate the '''Complete network''' (IBER PLUGINS) and define a maximum value for depth and velocity legend of 0.25 m and 0.5 m/s (IBERGIS OPTIONS). If the limits are not defined, IberGIS will autimatically defined it each time step.
  
==4 Results==
+
To run the simulation, just click on ‘'''Execute model'''’ button ([[File:Sanz-Ramos_et_al_2025a_8684_Icon_Run.png|20px]]), select the mesh (Mesh1) and the folder where the model will be run. After checking all data, the Iber-SWMM simulation starts. Once the simulation finish, the plugin asks for loading the results.
  
As in the hydrodynamic module for water flows, Iber-NNF also integrates flow depths, velocities, elevation, etc. However, particular results can be activated through Data >> Problem data >> NonNewtonian fluid tab, such as extra topographical information (terrain slope) and impact forces [<span id='cite-_Bib037'></span>[[#_Bib037|37]],<span id='cite-_Bib038'></span>[[#_Bib038|38]]]. This results essentially applies for dense snow avalanche modelling, but they are not limited to.
+
===3.3.6 Run configuration===
  
Particularly for impact forces, Iber-NNF calculates the dynamic pressure (Equation <span id='cite-_Ref202886400'></span>[[#_Ref202886400|(16)]]), the peak dynamic pressure (Equation <span id='cite-_Ref202886402'></span>[[#_Ref202886402|(17)]]) and its maximus as follows:
+
Once the simulation ends, accept loading the results of the simulation and, then, visualize them at 1 h of simulation. Fig. 17 shows the map of water depth and flow velocity (modulus) on the surface (results of Iber), and how the flow is transported over the streets mainly to the NE direction (where the outlet conditions are implemented). Considerable water accumulation is produced in five to nine locations (Fig. 18a) due to topographical depressions and the no consideration of outlet conditions (e.g., at southern part of the model).
  
{| class="formulaSCP" style="width: 100%;margin: 1em auto 0.1em auto;width: 100%;text-align: center;"  
+
{| style="width: 80%;margin: 1em auto 0.1em auto;border-collapse: collapse;"  
 
|-
 
|-
|  
+
| style="text-align: center;width: 80%;"|[[File:Sanz-Ramos_et_al_2025a_8124_Fig_17a.png|1600px]]
{| style="text-align: center;margin:auto;width: 100%;"
+
|  style="text-align: center;width: 10%;"|[[File:Sanz-Ramos_et_al_2025a_3871_Fig_17aa.png|1600px]]
 
|-
 
|-
| <math>p=\rho {u}^{2}</math>
+
| style="text-align: center;"|(a)
 +
|  style="text-align: center;"|
 
|}
 
|}
| style="text-align: center;width: 5px;text-align: right;white-space: nowrap;"|<span id='_Ref202886400'></span>(16)
+
{| style="width: 80%;margin: 1em auto 0.1em auto;border-collapse: collapse;"  
 
|-
 
|-
|  
+
| style="text-align: center;width: 80%;"|[[File:Sanz-Ramos_et_al_2025a_3399_Fig_17b.png|1600px]]
{| style="text-align: center;margin:auto;width: 100%;"
+
|  style="text-align: center;width: 10%;"|[[File:Sanz-Ramos_et_al_2025a_3293_Fig_17bb.png|1600px]]
 
|-
 
|-
| <math>{p}_{peak}=3\rho {u}^{2}</math>
+
|  style="text-align: center;"|(b)
|}
+
|  style="text-align: center;"|
|  style="text-align: center;width: 5px;text-align: right;white-space: nowrap;"|<span id='_Ref202886402'></span>(17)
+
 
|}
 
|}
 +
<span style="text-align: center; font-size: 75%;">'''Fig. 17. Hydrodynamic results on surface 1 h after the simulation starts: (a) depths; (b) velocities.'''</span>
  
 +
We can also check the Report summary of SWMM results. Fig. 18 shows an example for node depths, node inflows, link flows and outfall loading. Junction J60 presents a maximum depth of 3.55 m; thus, this node is under pressure and the flow goes from the sewer network to the street (this is one of the causes of water accumulation there, see Fig. 18a). In Node subcharge option we can observe that this node is working in pressurized flow for more than 2 hours.
  
where <math display="inline">\rho</math>  is the fluid density and <math display="inline">u</math> is the fluid velocity.
+
The outfall that spills the maximum discharge is O1, located at NE, with a peak discharge above 0.06 m3/s. This is because the sewer network mainly drains into this direction, and the flow in the conduits tends to accumulate in such direction.
 +
 
 +
{| style="width: 80%;margin: 1em auto 0.1em auto;border-collapse: collapse;"
 +
|-
 +
|  style="text-align: center;width: 25%;"|[[File:Sanz-Ramos_et_al_2025a_7003_Fig_19a.png|1600px]]
 +
|  style="text-align: center;width: 25%;"|[[File:Sanz-Ramos_et_al_2025a_1932_Fig_19b.png|1600px]]
 +
|  style="text-align: center;width: 25%;"|[[File:Sanz-Ramos_et_al_2025a_3713_Fig_19c.png|1600px]]
 +
|  style="text-align: center;width: 25%;"|[[File:Sanz-Ramos_et_al_2025a_9956_Fig_19d.png|1600px]]
 +
|-
 +
|  style="text-align: center;"|(a)
 +
|  style="text-align: center;"|(b)
 +
|  style="text-align: center;"|(c)
 +
|  style="text-align: center;"|(d)
 +
|}
 +
<span style="text-align: center; font-size: 75%;">'''Fig. 18. Hydrodynamic results in the sewer network (Summary report): (a) node depths; (b) node inflow; (c) link flow; (d) outfall loading.'''</span>
  
<br/>
+
==Funding==
  
<br/>
+
This publication is part of the project “DRAIN - Digital RAIN. An integrated model of urban drainage” (CPP2021-008756) funded by the Spanish Ministry of Science, Innovation and Universities - State Research Agency (MCIN/AEI/10.13039/501100011033) and by the European Union “Next Generation EU/PRTR”.
  
 
<span id='_Toc203976081'></span>
 
<span id='_Toc203976081'></span>
Line 476: Line 589:
  
 
<span id='_Bib001'></span>
 
<span id='_Bib001'></span>
[1] E. Bladé, L. Cea, G. Corestein, E. Escolano, J. Puertas, E. Vázquez-Cendón, J. Dolz, A. Coll, Iber: herramienta de simulación numérica del flujo en ríos, Rev. Int. Métodos Numéricos Para Cálculo y Diseño En Ing. 30 (2014) 1–10. [https://doi.org/10.1016/j.rimni.2012.07.004. https://doi.org/10.1016/j.rimni.2012.07.004.]
+
[1] E. Sañudo, L. Cea, J. Puertas, Modelling Pluvial Flooding in Urban Areas Coupling the Models Iber and SWMM, Water (Switzerland) 12 (2020) 2647. [https://doi.org/https://doi.org/10.3390/w12092647 https://doi.org/https://doi.org/10.3390/w12092647].
  
 
<span id='_Bib002'></span>
 
<span id='_Bib002'></span>
[2] M. Sanz-Ramos, E. Bladé, P. Oller, G. Furdada, Numerical modelling of dense snow avalanches with a well-balanced scheme based on the 2D shallow water equations, J. Glaciol. (2023) 1–17. [https://doi.org/10.1017/jog.2023.48. https://doi.org/10.1017/jog.2023.48.]
+
[2] E. Sañudo, O. García-Feal, L. Hagen, L. Cea, J. Puertas, C. Montalvo, R. Alvarado-Vicencio, J. Hofmann, IberSWMM+: A high-performance computing solver for 2D-1D pluvial flood modelling in urban environments, J. Hydrol. 651 (2025) 132603. [https://doi.org/10.1016/j.jhydrol.2024.132603 https://doi.org/10.1016/j.jhydrol.2024.132603].
  
 
<span id='_Bib003'></span>
 
<span id='_Bib003'></span>
[3] M. Sanz-Ramos, E. Bladé, M. Sánchez-Juny, El rol de los términos de fricción y cohesión en la modelización bidimensional de fluidos no Newtonianos: avalanchas de nieve densa, Ing. Del Agua. 27 (2023) 295–310. [https://doi.org/10.4995/ia.2023.20080. https://doi.org/10.4995/ia.2023.20080.]
+
[3] M. Sanz-Ramos, E. Sañudo, D. López-Gómez, O. García-Feal, E. Bladé, L. Cea, Evolución de la modelización numérica bidimensional del flujo en lámina libre a través del software Iber, Ing. Del Agua 29 (2025) 114–131. [https://doi.org/10.4995/ia.2025.23259 https://doi.org/10.4995/ia.2025.23259].
  
 
<span id='_Bib004'></span>
 
<span id='_Bib004'></span>
[4] M. Sanz-Ramos, C.A. Andrade, P. Oller, G. Furdada, E. Bladé, E. Martínez-Gomariz, Reconstructing the Snow Avalanche of Coll de Pal 2018 (SE Pyrenees), GeoHazards. 2 (2021) 196–211. [https://doi.org/10.3390/geohazards2030011. https://doi.org/10.3390/geohazards2030011.]
+
[4] M. Gómez, B. Russo, Hydraulic Efficiency of Continuous Transverse Grates for Paved Areas, J. Irrig. Drain. Eng. 135 (2009) 225–230. [https://doi.org/10.1061/(ASCE)0733-9437(2009)135:2(225) https://doi.org/10.1061/(ASCE)0733-9437(2009)135:2(225)].
  
 
<span id='_Bib005'></span>
 
<span id='_Bib005'></span>
[5] V. Ruiz-Villanueva, B. Mazzorana, E. Bladé, L. Bürkli, P. Iribarren-Anacona, L. Mao, F. Nakamura, D. Ravazzolo, D. Rickenmann, M. Sanz-Ramos, M. Stoffel, E. Wohl, Characterization of wood-laden flows in rivers, Earth Surf. Process. Landforms. 44 (2019) 1694–1709. [https://doi.org/10.1002/esp.4603. https://doi.org/10.1002/esp.4603.]
+
[5] M. Gómez, B. Russo, Comparative Study Of Methodologies To Determine Inlet Efficiency From Test Data: HEC-12 Methodology Vs UPC Method, Water Resour. Manag. III. WIT Trans. Ecol. Environ. 80 (2005) 623–632. [https://doi.org/10.2495/WRM050621 https://doi.org/10.2495/WRM050621].
  
 
<span id='_Bib006'></span>
 
<span id='_Bib006'></span>
[6] M. Sanz-Ramos, J.J. Vales-Bravo, E. Bladé, M. Sánchez-Juny, Reconstructing the spill propagation of the Aznalcóllar mine disaster, Mine Water Environ. 43 (2024). [https://doi.org/10.1007/s10230-024-01000-5. https://doi.org/10.1007/s10230-024-01000-5.]
+
[6] M. Gómez, J. Parés, B. Russo, E. Martínez‐Gomariz, Methodology to quantify clogging coefficients for grated inlets. Application to SANT MARTI catchment (Barcelona), J. Flood Risk Manag. 12 (2019). [https://doi.org/10.1111/jfr3.12479 https://doi.org/10.1111/jfr3.12479].
  
 
<span id='_Bib007'></span>
 
<span id='_Bib007'></span>
[7] M. Sanz-Ramos, E. Bladé, M. Sánchez-Juny, T. Dysarz, Extension of Iber for Simulating Non–Newtonian Shallow Flows: Mine-Tailings Spill Propagation Modelling, Water. 16 (2024) 2039. [https://doi.org/10.3390/w16142039. https://doi.org/10.3390/w16142039.]
+
[7] M. Gómez, B. Russo, J. Tellez-Alvarez, Experimental investigation to estimate the discharge coefficient of a grate inlet under surcharge conditions, Urban Water J. 16 (2019) 85–91. [https://doi.org/10.1080/1573062X.2019.1634107 https://doi.org/10.1080/1573062X.2019.1634107].
  
 
<span id='_Bib008'></span>
 
<span id='_Bib008'></span>
[8] M. Sanz-Ramos, L. Cea, E. Bladé, D. López-Gómez, E. Sañudo, G. Corestein, G. García-Alén, J. Aragón-Hernández, Iber v3. Reference manual and user’s interface of the new implementations, CIMNE, 2022. [https://doi.org/10.23967/iber.2022.01. https://doi.org/10.23967/iber.2022.01.]
+
[8] M. Gómez, J. Tellez-Alvarez, B. Russo, Discharge coefficients to be used in inlet hydraulics, Proc. Inst. Civ. Eng. Water Manag. (2023) 1–11. [https://doi.org/10.1680/jwama.22.00059 https://doi.org/10.1680/jwama.22.00059].
  
 
<span id='_Bib009'></span>
 
<span id='_Bib009'></span>
[9] Y. Ni, Z. Cao, Q. Liu, Mathematical modeling of shallow-water flows on steep slopes, J. Hydrol. Hydromechanics. 67 (2019) 252–259. [https://doi.org/10.2478/johh-2019-0012. https://doi.org/10.2478/johh-2019-0012.]
+
[9] M. Sanz-Ramos, J. Téllez-Álvarez, E. Bladé, M. Gómez-Valentín, J.D. Tellez Alvarez, E. Bladé, M. Gómez-Valentín, Simulating the hydrodynamics of sewer-inlets using 2D-SWE based model, in: Adv. Hydroinformatics. SimHydro 2019 - Model. Extrem. Situations Cris. Manag., Springer Singapore, 2020: pp. 821–838. [https://doi.org/10.1007/978-981-15-5436-0 https://doi.org/10.1007/978-981-15-5436-0].
  
 
<span id='_Bib010'></span>
 
<span id='_Bib010'></span>
[10] A. Maranzoni, M. Tomirotti, New formulation of the two-dimensional steep-slope shallow water equations. Part I: Theory and analysis, Adv. Water Resour. 166 (2022) 104255. [https://doi.org/10.1016/j.advwatres.2022.104255. https://doi.org/10.1016/j.advwatres.2022.104255.]
+
[10] J. Tellez-Alvarez, M. Gómez, B. Russo, Quantification of Energy Loss in Two Grated Inlets under Pressure, Water 12 (2020) 1601. [https://doi.org/10.3390/w12061601 https://doi.org/10.3390/w12061601].
  
 
<span id='_Bib011'></span>
 
<span id='_Bib011'></span>
[11] D. Zugliani, G. Rosatti, TRENT2D❄: An accurate numerical approach to the simulation of two-dimensional dense snow avalanches in global coordinate systems, Cold Reg. Sci. Technol. 190 (2021) 103343. [https://doi.org/10.1016/j.coldregions.2021.103343. https://doi.org/10.1016/j.coldregions.2021.103343.]
+
[11] E. Martínez-Gomariz, M. Gómez, B. Russo, P. Sánchez, J.-A. Montes, Methodology for the damage assessment of vehicles exposed to flooding in urban areas, J. Flood Risk Manag. 12 (2018) e12475. [https://doi.org/10.1111/jfr3.12475 https://doi.org/10.1111/jfr3.12475].
  
 
<span id='_Bib012'></span>
 
<span id='_Bib012'></span>
[12] V. Te Chow, Open-Channel Hydraulics, McGraw-Hill Book Company Inc. New York, USA, 1959.
+
[12] E. Martínez-Gomariz, M. Gómez, B. Russo, S. Djordjević, A new experiments-based methodology to define the stability threshold for any vehicle exposed to flooding, Urban Water J. 14 (2017) 1–10. [https://doi.org/10.1080/1573062X.2017.1301501 https://doi.org/10.1080/1573062X.2017.1301501].
  
 
<span id='_Bib013'></span>
 
<span id='_Bib013'></span>
[13] S.B. Savage, K. Hutter, The motion of a finite mass of granular material down a rough incline, J. Fluid Mech. 199 (1989) 177–215. [https://doi.org/10.1017/S0022112089000340. https://doi.org/10.1017/S0022112089000340.]
+
[13] E. Martínez-Gomariz, M. Gómez, B. Russo, P. Sánchez, J.A. Montes, Metodología para la evaluación de daños a vehículos expuestos a inundaciones en zonas urbanas, Ing. Del Agua 21 (2017) 247. [https://doi.org/10.4995/ia.2017.8772 https://doi.org/10.4995/ia.2017.8772].
  
 
<span id='_Bib014'></span>
 
<span id='_Bib014'></span>
[14] M. Christen, J. Kowalski, P. Bartelt, RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain, Cold Reg. Sci. Technol. 63 (2010) 1–14. [https://doi.org/10.1016/j.coldregions.2010.04.005. https://doi.org/10.1016/j.coldregions.2010.04.005.]
+
[14] E. Martínez‐Gomariz, B. Russo, M. Gómez, A. Plumed, An approach to the modelling of stability of waste containers during urban flooding, J. Flood Risk Manag. 13 (2020). [https://doi.org/10.1111/jfr3.12558 https://doi.org/10.1111/jfr3.12558].
  
 
<span id='_Bib015'></span>
 
<span id='_Bib015'></span>
[15] M.E. Eglit, K.S. Demidov, Mathematical modeling of snow entrainment in avalanche motion, Cold Reg. Sci. Technol. 43 (2005) 10–23. [https://doi.org/10.1016/j.coldregions.2005.03.005. https://doi.org/10.1016/j.coldregions.2005.03.005.]
+
[15] B. Russo, D. Sunyer, M. Velasco, S. Djordjević, Analysis of extreme flooding events through a calibrated 1D/2D coupled model: the case of Barcelona (Spain), J. Hydroinformatics 17 (2015) 473–491. [https://doi.org/10.2166/hydro.2014.063 https://doi.org/10.2166/hydro.2014.063].
  
 
<span id='_Bib016'></span>
 
<span id='_Bib016'></span>
[16] J. Castelló, Enhancement and application of numerical methods for snow avalanche modelling, Master thesis. Universitat Politècnica de Catalunya. Barcelona, Spain, 2020.
+
[16] M. Gómez, J. Recasens, B. Russo, E. Martínez-Gomariz, E. Martinez-Gomariz, Assessment of inlet efficiency through a 3D simulation: numerical and experimental comparison, Water Sci. Technol. 74 (2016) 1926–1935. [https://doi.org/10.2166/wst.2016.326 https://doi.org/10.2166/wst.2016.326].
  
 
<span id='_Bib017'></span>
 
<span id='_Bib017'></span>
[17] K. Msheik, Non-Newtonian Fluids: Modeling and Well-Posedness, Universite Grenoble Alpes, Saint-Martin-d’Hères, France, 2020. [https://hal.archives-ouvertes.fr/tel-03099969. https://hal.archives-ouvertes.fr/tel-03099969.]
+
[17] J. Tellez, M. Gómez, B. Russo, J.M. Redondo, Characterize the hydraulic behaviour of grate inlet in urban drainage to prevent the urban’s flooding, in: EGU Gen. Assem. 2016, Viena (Austria), 2016. [https://doi.org/10.1061/(ASCE)IR.1943-4774.0000625 https://doi.org/10.1061/(ASCE)IR.1943-4774.0000625].
  
 
<span id='_Bib018'></span>
 
<span id='_Bib018'></span>
[18] P.Y. Julien, C.A. León, Mudfloods, mudflows and debrisflows, classification in rheology and structural design, in: Int. Work. Debris Flow Disaster 27 November–1 December 1999, 2000: pp. 1–15.
+
[18] E. Sañudo, L. Cea, J. Puertas, J. Naves, J. Anta, Large‐scale physical facility and experimental dataset for the validation of urban drainage models, Hydrol. Process. 38 (2024). [https://doi.org/10.1002/hyp.15068 https://doi.org/10.1002/hyp.15068].
  
 
<span id='_Bib019'></span>
 
<span id='_Bib019'></span>
[19] T. Takahashi, Debris flow: mechanics and hazard mitigation, in: ROC-JAPAN Jt. Semin. Mul- Tiple Hazards Mitig., National Taiwan Univerisity, Taipei, Taiwan, ROC, 1985: pp. 1075–1092.
+
[19] J. Naves, J. Anta, J. Suárez, J. Puertas, Hydraulic, wash-off and sediment transport experiments in a full-scale urban drainage physical model, Sci. Data 7 (2020) 44. [https://doi.org/10.1038/s41597-020-0384-z https://doi.org/10.1038/s41597-020-0384-z].
  
 
<span id='_Bib020'></span>
 
<span id='_Bib020'></span>
[20] A. Laenen, R.P. Hansen, Simulation of three lahars in the Mount St. Helens area, Washington, using a one-dimensional, unsteady-state streamflow model, 1988. [https://doi.org/https://doi.org/10.3133/wri884004. https://doi.org/https://doi.org/10.3133/wri884004.]
+
[20] E. Sañudo, L. Cea, J. Puertas, Comparison of three different numerical implementations to model rainfall‐runoff transformation on roofs, Hydrol. Process. 36 (2022). [https://doi.org/10.1002/hyp.14588 https://doi.org/10.1002/hyp.14588].
  
 
<span id='_Bib021'></span>
 
<span id='_Bib021'></span>
[21] M. Syarifuddin, S. Oishi, R.I. Hapsari, D. Legono, Empirical model for remote monitoring of rain-triggered lahar at Mount Merapi, J. Japan Soc. Civ. Eng. Ser. B1 (Hydraulic Eng. 74 (2018) I_1483-I_1488. [https://doi.org/10.2208/jscejhe.74.I_1483. https://doi.org/10.2208/jscejhe.74.I_1483.]
+
[21] J.L. Aragón Hernández, G.A. Aguilar Martínez, U. Velázquez Ríos, M.R. Jiménez Magaña, A. Maya Franco, Distribución espacial de variables hidrológicas. Implementación y evaluación de métodos de interpolación, Ing. Investig. y Tecnol. 20 (2019) 1–15. [https://doi.org/10.22201/fi.25940732e.2019.20n2.023 https://doi.org/10.22201/fi.25940732e.2019.20n2.023].
  
 
<span id='_Bib022'></span>
 
<span id='_Bib022'></span>
[22] A.R. Darnell, J.C. Phillips, J. Barclay, R.A. Herd, A.A. Lovett, P.D. Cole, Developing a simplified geographical information system approach to dilute lahar modelling for rapid hazard assessment, Bull. Volcanol. 75 (2013) 713. [https://doi.org/10.1007/s00445-013-0713-6. https://doi.org/10.1007/s00445-013-0713-6.]
+
[22] V.T. Chow, D.R. Maidment, L.W. Mays, Applied Hydrology, MCGRAW-HIL, New York, USA, 1988..
  
 
<span id='_Bib023'></span>
 
<span id='_Bib023'></span>
[23] E.C. Bingham, An investigation of the laws of plastic flow, Bull. Bur. Stand. 13 (1916) 309–353. [https://doi.org/10.6028/bulletin.304. https://doi.org/10.6028/bulletin.304.]
+
[23] ICGC, Descàrregues, Inst. Cart. i Geològic Catalunya (2021). [https://www.icgc.cat/Descarregues https://www.icgc.cat/Descarregues] (accessed February 2, 2021).
 
+
<span id='_Bib024'></span>
+
[24] M. Pastor, B. Haddad, G. Sorbino, S. Cuomo, V. Drempetic, A depth‐integrated, coupled SPH model for flow‐like landslides and related phenomena, Int. J. Numer. Anal. Methods Geomech. 33 (2009) 143–172. [https://doi.org/10.1002/nag.705. https://doi.org/10.1002/nag.705.]
+
 
+
<span id='_Bib025'></span>
+
[25] H. Chen, C.F. Lee, Runout Analysis of Slurry Flows with Bingham Model, J. Geotech. Geoenvironmental Eng. 128 (2002) 1032–1042. [https://doi.org/10.1061/ https://doi.org/10.1061/](ASCE)1090-0241(2002)128:12(1032).
+
 
+
<span id='_Bib026'></span>
+
[26] D. Naef, D. Rickenmann, P. Rutschmann, B.W. McArdell, Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model, Nat. Hazards Earth Syst. Sci. 6 (2006) 155–165. [https://doi.org/10.5194/nhess-6-155-2006. https://doi.org/10.5194/nhess-6-155-2006.]
+
 
+
<span id='_Bib027'></span>
+
[27] A. Voellmy, Über die Zerstörungskraft von Lawinen, Schweizerische Bauzeitung. 73 (1955) 15. [https://doi.org/10.5169/seals-61891. https://doi.org/10.5169/seals-61891.]
+
 
+
<span id='_Bib028'></span>
+
[28] P. Bartelt, C.V. Valero, T. Feistl, M. Christen, Y. Bühler, O. Buser, Modelling cohesion in snow avalanche flow, J. Glaciol. 61 (2015) 837–850. [https://doi.org/10.3189/2015JoG14J126. https://doi.org/10.3189/2015JoG14J126.]
+
 
+
<span id='_Bib029'></span>
+
[29] G. Macedonio, M.T.T. Pareschi, Numerical simulation of some lahars from Mount St. Helens, J. Volcanol. Geotherm. Res. 54 (1992) 65–80. [https://doi.org/10.1016/0377-0273 https://doi.org/10.1016/0377-0273](92)90115-T.
+
 
+
<span id='_Bib030'></span>
+
[30] J.S. O’Brien, P.Y. Julien, Laboratory Analysis of Mudflow Properties, J. Hydraul. Eng. 114 (1988) 877–887. [https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(877) https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(877)].
+
 
+
<span id='_Bib031'></span>
+
[31] W.H. Herschel, R. Bulkley, Konsistenzmessungen von Gummi-Benzollösungen, Kolloid-Zeitschrift. 39 (1926) 291–300. [https://doi.org/10.1007/bf01432034. https://doi.org/10.1007/bf01432034.]
+
 
+
<span id='_Bib032'></span>
+
[32] L. Dreier, Y. Bühler, W. Steinkogler, T. Feistl, M. Christen, P. Bartelt, Modelling Small and Frequent Avalanches, in: Int. Snow Sci. Work. 2014 Proc., 29 Sep - 3 Oct, Banff, Canada, 2014: p. 8. [http://arc.lib.montana.edu/snow-science/item/2128. http://arc.lib.montana.edu/snow-science/item/2128.]
+
 
+
<span id='_Bib033'></span>
+
[33] V. Medina, M. Hürlimann, A. Bateman, Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula, Landslides. 5 (2008) 127–142. [https://doi.org/10.1007/s10346-007-0102-3. https://doi.org/10.1007/s10346-007-0102-3.]
+
 
+
<span id='_Bib034'></span>
+
[34] M. Eglit, A. Yakubenko, J. Zayko, A Review of Russian Snow Avalanche Models—From Analytical Solutions to Novel 3D Models, Geosciences. 10 (2020) 77. [https://doi.org/10.3390/geosciences10020077. https://doi.org/10.3390/geosciences10020077.]
+
 
+
<span id='_Bib035'></span>
+
[35] M. Garcia, G. Parker, Entrainment of Bed Sediment into Suspension, J. Hydraul. Eng. 117 (1991) 414–435. [https://doi.org/10.1061/ https://doi.org/10.1061/](ASCE)0733-9429(1991)117:4(414).
+
 
+
<span id='_Bib036'></span>
+
[36] P. Bartelt, B. Salm, U. Gruber, Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining, J. Glaciol. 45 (1999) 242–254. [https://doi.org/10.3189/s002214300000174x. https://doi.org/10.3189/s002214300000174x.]
+
 
+
<span id='_Bib037'></span>
+
[37] C.J. Keylock, M. Barbolini, Snow avalanche impact pressure - vulnerability relations for use in risk assessment, Can. Geotech. J. 38 (2011) 227–238. [https://doi.org/10.1139/t00-100. https://doi.org/10.1139/t00-100.]
+
 
+
<span id='_Bib038'></span>
+
[38] F. Rudolf-Miklau, S. Sauermoser, A.I. Mears, F. Rudolf‐Miklau, S. Sauermoser, A.I. Mears, The Technical Avalanche Protection Handbook, Wiley, Berlin, Germany, 2014. [https://doi.org/10.1002/9783433603840. https://doi.org/10.1002/9783433603840.]
+
 
+
 
+
 
+
== Document ==
+
<pdf>Media:Sanz-Ramos_et_al_2025a_2141_Manual IberGIS_v0.pdf</pdf>
+

Latest revision as of 06:15, 14 November 2025


Abstract

Urban drainage systems are facing increasing challenges due to climate change, urban growth, and the need for more sustainable water management. To address these issues, the Digital DRAIN project has developed a tool that integrates different models within a GIS environment to analyse the performance of urban drainage systems. The tool helps assess both water flows and pollution, while also supporting the design of sustainable solutions and adaptation strategies. Delivered as the QGIS plugin IberGIS, it provides an accessible framework to improve urban water management and enhance resilience against floods and environmental impacts. This document is a user's guide to introduce the user how to use IberGIS.

Keywords: urban drainage, 1D/2D modelling, Iber-SWMM, QGIS

Resumen

Los sistemas de drenaje urbano se enfrentan a retos cada vez mayores debido al cambio climático, el crecimiento urbano y la necesidad de una gestión del agua más sostenible. Para abordar estos problemas, el proyecto Digital DRAIN ha desarrollado una herramienta que integra diversos modelos en un entorno SIG para analizar el rendimiento de los urban sistemas de drenaje. Esta herramienta permite evaluar tanto el caudal como la contaminación del agua, además de facilitar el diseño de soluciones sostenibles y estrategias de adaptación. Implementada como complemento de QGIS, IberGIS ofrece un marco accesible para mejorar la gestión del agua urbana y aumentar la resiliencia ante inundaciones e impactos ambientales. Este documento es una guía de usaurio para introducir al usuario en el manejo de IberGIS.

Palabras clave: drenaje urbano, simulación 1D/2D, Iber-SWMM, QGIS

1 Introduction

In recent years, the planning, design, construction, and management of urban drainage elements has evolved towards an integrated approach, known as dual drainage. This process focuses on the joint understanding of all physical processes involved, both in terms of water quantity and quality, as well as surface and sewer network flows, and the final receiving environment (rivers, estuaries, seas, and oceans). This requires modelling and analysis tools that account for such coupling (dual drainage). Furthermore, these tools must address today’s global challenges, moving towards a more sustainable world, improving the ecological status of the environment, incorporating climate change adaptation strategies, and ensuring public safety in the face of natural phenomena such as floods.

Along these lines, the project entitled ‘Digital DRAIN. An Integrated Urban Drainage Model’ (DRAIN, CPP2021-008756) aims to develop an open-source, free modelling tool for analysing all processes of urban drainage, integrated within a graphical information system (GIS) environment. Its purpose is to assess hydraulic performance and the effects of diffuse pollution both on the surface, within the drainage network, and in the receiving environment. The tool will also include specific modules for the implementation of Sustainable Urban Drainage Systems (SuDS) and for analysing actions related to climate change adaptation.

The project derived in a plugin of QGIS, called IberGIS. This plugin is a full integration of the one-dimensional urban drainage software SWMM and an integration of the two-dimensional hydrodynamic software Iber, particularly its calculation module Iber-SWMM [1]. Thus, not all capabilities neither calculation modules of Iber are available. Only particular characteristics of the Iber-SWMM module are described below.

QGIS plugin

IberGIS can be freely downloaded through www.iberaula.com.

Data

Data to build-up the models presented in this document is stored here.

Important note

This document does not attempt to be a QGIS manual. Despite the whole model’s build-up process is properly defined, the input data might require a pre-process and previous knowledge in GIS environments. The authors encourage users to familiarise with QGIS by reading the documentation and, in case of general doubts, by contacting to the community.

2 Graphical user interface of IberGIS

2.1 Generalities

The graphical user interface (GUI) of the plugin IberGIS has been developed within the QGIS environment (version 3.40 or greater), and it follows its visual style guide. As for any plugin of QGIS, IberGIS can be installed through Plugins >> Manage and Install Plugins menu and install it loading the *.zip file available from www.iberaula.com. Once installed, and according to the User’s Profile, it will be loaded automatically during the QGIS initialization.

The calculation engine, Iber-SWMM, used in this plugin corresponds to the version of Iber 3.4.0. Older versions are not compatible, while future versions might not be fully compatible.

2.2 Particularities

2.2.1 Model structure

The IberGIS has a workflow fully integrated in the QGIS software. Once installed, the IberGIS button (Sanz-Ramos et al 2025a 7022 Icon Iber.png) will automatically appear in the toolbars of QGIS. Clicking there, a new window will ask for the geopackage and QGIS project creation (Fig. 1a).

After that, two new groups of toolbars of IberGIS will appear. One is related to the model’s build-up process (Fig. 1b) and the other to the model’s configuration, checks, run the simulation and visualize the results (Fig. 1c). A brief description of each option is detailed below:

  • Import INP (Sanz-Ramos et al 2025a 3038 Icon SWMM.png). Imports the *.inp and *.ini files of any SWMM model.
  • Boundary conditions manager (Sanz-Ramos et al 2025a 1523 Icon BCM.png). Window that enables saving different boundary condition scenarios.
  • Create boundary condition (Sanz-Ramos et al 2025a 7568 Icon BC.png). It automatizes the implementation of boundary conditions.
  • Non visual objects manager (Sanz-Ramos et al 2025a 2557 Icon TS.png). Window that enables saving different non visual objects, such as timeseries, rules, etc.
  • Bridges actions (Sanz-Ramos et al 2025a 4278 Icon Bridges.png). Options to implement and edit bridges.
  • Options (Sanz-Ramos et al 2025a 9023 Iber Options.png). Main model options window.
  • Generate INP (Sanz-Ramos et al 2025a 4769 Icon SWMMcreate.png). Exports the current SWMM layers to a SWMM project.
  • Mesh manager (Sanz-Ramos et al 2025a 4906 Icon Mesh.png). Window that enables saving different calculation mesh scenarios.
  • Execute model (Sanz-Ramos et al 2025a 8684 Icon Run.png). Window that enables defining general options, selecting the calculation mesh and launch the simulation.
  • Results (Sanz-Ramos et al 2025a 5527 Icon Results.png). Options to visualize the SWMM and Iber results.
  • Check project (Sanz-Ramos et al 2025a 2183 Icon Iber.png). Dialog that starts a check project.


Additionally, the Processing Toolbox will show two specific option for IberGIS plugin (Fig. 1d). Processing Toolbox >> IberGIS is related to automatize general procedures such as project checking, import necessary features (ground, roof, inlets layers), import results, and associate Iber inlets/roofs to SWMM junctions. The other one, accessible though 'Processing Toolbox >> IberGIS – Mesh, is a pack of particular options to obtain a well-conditioned calculation mesh.

Sanz-Ramos et al 2025a 3164 Fig 1.png

Fig. 1. IberGIS workflow: (a) geopackage and project creation window; (b) build-up processing toolbar; (c) other options toolbar; (d) processing toolbox of IberGIS; (e) layers structure.

Note that any IberGIS model is saved in two files: a geopackage and the QGIS project. Both are linked and when the user opens the QGIS project, automatically it will look for the geopackage. Additionally, the geopackage contains the model itself, so the user can share it without the QGIS project.

2.2.2 Workflow

All these options and functionalities are oriented to facilitate the model build-up process. Since the model is saved in a unique geopackage, different kind of entities can be saved on it. On one hand, non-visual objects is managed in the abovementioned option (Sanz-Ramos et al 2025a 3799 Icon TS.png). On the other hand, the creation and edition of visual objects is based on a strict group of layers (Fig. 1e) that contains TEMPORAL information (e.g., meshes, results), INPUT data (e.g., data of SWMM and Iber models) and a BASE MAP image. It is mandatory to preserve the structure of the INPUT group, since other data saved in different layers will be omitted during the calculation process:

INPUT

  • SWMM
    • Junction (layer of points)
    • Divider (layer of points)
    • Outfall (layer of points)
    • Storage (layer of points)
    • Conduit (layer of lines)
    • Pump (layer of lines)
    • Orifice (layer of lines)
    • Weir (layer of lines)
    • Outlet (layer of lines)
  • IBER
    • Inlet (layer of points)
    • Hyetograph (layer of points)
    • Boundary conditions (layer of lines)
    • Bridge (layer of lines)
    • Culvert (layer of lines)
    • Pinlet (layer of surfaces)
    • Landuses (layer of dataset)
  • MESH
    • Mesh anchor points (layer of points)
    • Mesh anchor lines (layer of lines)
    • Roof (layer of surfaces)
    • Ground (layer of surfaces)


The generation of this group of layers is automatic during the models creation. It can be edit manually, using the available tools of QGIS, or automatically, using the tools of IberGIS developed ad-hoc (Fig. 1d). Thus, a manual edition requires the generation of the geometric entities of some layer of INPUT group. I.e., if the user wants to simulate only a SWMM model, the proper layer must contain all the information together with the IBER and MESH data. Whereas, an Iber model, without sewer network, requires the definition of, at least, Ground and Boundary conditions layers. Roof layer is optional and when exists it can be linked directly to the Ground or to the Junction layer (if an Iber-SWMM model is simulated). In this sense, an Iber-SWMM model, i.e., a coupled urban drainage simulation, also requires the definition of the Inlet layer and, if there is no flow, the definition of the rainfall data, whether it is by hyetographs or rasters of rain.

It is worth noticing that raster data as topography or infiltration losses can be added to any layer’s group. During the Mesh generation process (Sanz-Ramos et al 2025a 1076 Icon Mesh.png) these data, if exists in the project, can be selected. Other raster data, such as rainfall raster, must be defined as a timeseries (Sanz-Ramos et al 2025a 8317 Icon TS.png) by defining the raster name per each time interval. The directory where the raster are located must be provided.

Previous to the simulation process (Sanz-Ramos et al 2025a 6615 Icon Run.png), a new folder will be created containing the files that calculation engine Iber-SWMM will be used to carry out the simulation, even save the results. As each simulation scenario can be saved independently, different folders will be created. Note if you share the model (*.gpkg and/or *.gps), the folder that contains the results will be lost. So, the model must be re-simulated to generate again the results or consider to share all this information together with the model.

2.2.3 Calculation engine

IberGIS uses the calculation engine of Iber and SWMM, and it is particularly oriented to coupled simulations using the integrated module called Iber-SWMM [1]. The urban drainage models usually require high computational effort, especially in large urban areas, the computational time can be an enormous bottleneck. To solve this issue, the simulations are carried out using the parallelised version of Iber-SWMM for NVIDIA graphical processing units (GPU) [2]. This allows accelerations in the computational time from 27 to 250 times faster than the single-threaded version.

Both models are freely distributed:

2.3 Current and future versions

As above-mentioned, the current version of IberGIS is particularly oriented to address flood scenarios in urban environments using, in a coupled way, two computational engines: Iber for the rainfall-runoff process and SWMM for the sewer network. Full capabilities and functionalities of the calculation engines are not currently available.

SWMM cannot be run independently since the rainfall-runoff process is carried out by Iber. Future versions might deal with these casuistic by generating a coupled and dual model, part of them being simulated with SWMM and the rest with Iber-SWMM.

Iber currently has 9 calculation modules [3] that works together with the hydrodynamic one, the principal module which the others depends on it. Only functionalities oriented to urban drainage of Iber-SWMM module are currently implemented in IberGIS. Despite that, some other functionalities, especially those related to the general hydrodynamics in flood scenarios assessment, are implemented such as bridges and culverts. Future versions might include other calculation modules of Iber.

3 Study cases

This User’s tutorial is composed by three examples: two real laboratory facility tests and a synthetic case. It is oriented to provide the elemental steps to build-up an IberGIS model, mainly to apply the Iber-SWMM calculation module for urban drainage applications.

3.1 Laboratory case: grate inlet testing platfrom

The experiment facility, located in the Hydraulic and Fluid Mechanics Laboratory of the Polytechnic University of Catalonia (UPC-BarcelonaTECH), consists in a 1:1-scale platform of 5.5 m-length and 3 m-width that represents the roadway of a street. This facility can be feed by a constant discharge up to 200 L/s and it can change its longitudinal and transverse slopes from 0 to 10 % and 0 to 4 %, respectively. It was originally designed to test the efficiency of longitudinal and transversal grate inlets [4-10]; nowadays, it is used to assess hazard criteria for objects that can be floated and transported during rainfall events in urban environments [11-14]. This exercise aims of familiarizing the user with the graphical interface and the structure of the layer, and to present other relevant information.

3.1.1 Data

The model will be build-up using the tools developed ad-hoc to facilitate the whole process. To that end, the following geometric entities are provided:

  • Coordinates of the geometric entity (text)


None additional geometric information is needed since the model will be created manually.

3.1.2 Model build-up

Once opened QGIS, load the IberGIS plugin by clicking on the icon Sanz-Ramos et al 2025a 7924 Icon Iber.png, and the model generation window will appear (Fig. 2a). Please, enter the model name (GPKG Name) and a description. Then, define the location and the coordinate system using the Spatial Reference System Identifier (SRID) —in this case 25830— and click the Accept button. After that, IberGIS asks for the QGIS project creation (Fig. 2b). This step is mandatory since it will automatically load the geopackage into the QGIS project

Sanz-Ramos et al 2025a 7847 Fig 2a.png Sanz-Ramos et al 2025a 8900 Fig 2b.png
(a) (b)

Fig. 2. Model generation window: (a) creation of the geopackage tab; (b) creation of the QGIS project tab.

The geometry of the facility is defined by 8 points that we have to load as Delimited Text Layer by the menu Layer >> Add Layer >> Delimited Text Layer. Now, we have to select start editing (Sanz-Ramos et al 2025a 9421 Icon editing.png) the layer called ‘Ground’ located in the group INPUT > IBER, which contains the main information of model geometry. Add Polygon Feature (Sanz-Ramos et al 2025a 3505 Icon polygon.png) by selecting the imported points and creating a polygon that represents the street part of the laboratory facility platform (Fig. 3). After finishing the geometry, the Feature Attribute table of ‘Ground’ layer will appear asking for the geometry properties. We can introduce a ‘cellsize’ of 0.2 m and a ‘custom_roughness’ of 0.015 s·m-1/3 (Fig. 3a). Repeat this action to create the polygon that represents de grate inlet geometry and introducing a ‘cellsize’ and ‘custom_roughness’ of 0.1 m and 0.02, respectively (Fig. 3b). Finish editing mode to save the changes into ‘Ground’ layer. Note, ‘Enable Snapping’ (Sanz-Ramos et al 2025a 4548 Icon snapping.png) option will facilitate the creation of the model.

Sanz-Ramos et al 2025a 2142 Fig 3a.png Sanz-Ramos et al 2025a 8359 Fig 3b.png
(a) (b)
Sanz-Ramos et al 2025a 2387 Fig 3c.png
(c)

Fig. 3. ‘Ground’ layer creation: (a) generation of the platform geometry; (b) generation of the grate inlet geometry; (c) View of the attribute table of ‘Ground’ layer.

This geometry corresponds to the grate inlet called ‘Barcelona1’, commonly used in Barcelona city and already experimentally and numerically tested in this facility (e.g., [9,10,15-17]). Open the attribute table of ‘Ground’ layer to verify that, indeed, the geometry is properly saved together with the properties that we defined previously (Fig. 3c). Now, we can edit both the geometry and the properties of each geometrical feature of this layer.

We can hide or delete the auxiliary layer of points used to create the polygons of ‘Ground’ layer.

3.1.3 Hydraulic conditions

The hydraulic conditions of the model are a constant discharge (left side of the model), as inlet, and a critical flow regime (right side of the model), as outlet. To implement so, we have to open the Boundary conditions manager (Sanz-Ramos et al 2025a 1523 Icon BCM.png) and create a new by defining the ‘idval’ code (Fig. 4a). The ‘idval’ is a mandatory parameter, ‘name’ and ‘description’ are optional. IberGIS automatically will use this ‘idval’ as ‘Current scenario’. The manager window allows to store different inlet and outlet boundary conditions per scenario using the same ‘idval’ code.

Before creating the boundary conditions, especially those that use a timeseries like as inlet condition defined by a hydrograph, we must create previously a timeseries through Non visual object manager window (Sanz-Ramos et al 2025a 2557 Icon TS.png). Go to ‘Timeseries’ tab and create the inlet condition by defining an increasing discharge from 0 to 0.1 m3/s in 60 s (Fig. 4b).

The definition of the inlet/outlet condition can be carried out using the common options of QGIS by editing the layer called ‘Boundary conditions’. Select this layer and enable the editing mode (Sanz-Ramos et al 2025a 9785 Icon editing.png). Then, create a line (Sanz-Ramos et al 2025a 5879 Icon createLINE.png) that define the inlet boundary condition in the left side, as it is shown in Fig. 4c. In the Feature Attribute table of Boundary conditions select both the ‘bcscenario’ (BC1), ‘boundary_type’ (INLET TOTAL DISCHARGE (SUB)CRITICAL) and the ‘timeseries’ (Inlet). Repeat this process by selecting the opposite side for the outlet condition and defining the ‘bcscenario’ and the ‘boundary_type’ as BC1 and OUTLET (SUPER)CRITICAL, respectively (Fig. 4d). Finish the edition mode and save it.

Sanz-Ramos et al 2025a 1020 Fig 4a.png Sanz-Ramos et al 2025a 6524 Fig 4b.png
(a) (b)
Sanz-Ramos et al 2025a 8408 Fig 4c.png Sanz-Ramos et al 2025a 2187 Fig 4d.png
(c) (d)

Fig. 4. Boundary conditions. (a) Creation of the current scenario. (b) Creation of the timeseries of the inlet conditions. (c) Implementation of the Inlet boundary condition. (d) Implementation of the Outlet boundary condition.

We are going to reproduce a grate inlet test; thus, we must define it by editing the ‘Inlet’ layer. Start editing (Sanz-Ramos et al 2025a 5476 Icon editing.png) and create (Sanz-Ramos et al 2025a 2130 Icon create.png) the inlet by selecting the centroid of the grate inlet surface. A Feature Attribute table will appear and we have to fill it by selecting the ‘outlet_type’ as SINK, a ‘top_elev’ of 0 m, a ‘width’ of 0.26 m, a ‘length’ of 0.74 m, the ‘method’ as W_O (i.e., weir/orifice), a ‘weir_cd’ of 1.6, a ‘orifice_cd’ of 0.7, and a ‘efficiency’ of 100. The rest of parameters by default. Save the changes.

3.1.4 Mesh generation

The mesh generation is based on the information of ‘Ground’ layer, particularly on its geometry and the ‘cellsize’ field. As we defined previously, the platform has a 0.2 m of element side length while the grate inlet area of 0.1 m. Go to Mesh manager (Sanz-Ramos et al 2025a 4906 Icon Mesh.png) and create a new one. As the platform is fully horizontal, keep all values by default and press OK (Fig. 5a). If we do so, the mesh generation process will succesfully finish (Fig. 5b) and the computational surface domain will be discretized as shonw in Fig. 5c.

Once the mesh is generated, the current boundary conditions have been automatically assigned to this mesh. However, the user has the posibility to use any of the boundary conditions scenarios defined in the Boundary condition manager.


Sanz-Ramos et al 2025a 6764 Fig 5a.png Sanz-Ramos et al 2025a 4215 Fig 5b.png Sanz-Ramos et al 2025a 9466 Fig 5c.png
(a) (b) (c)

Fig. 5. Mesh generation: (a) definition of the mesh properties; (b) example of error message during the mesh generation; (c) view of the calculation mesh.

3.1.5 Run configuration

Finally, go to ‘Options’ button (Sanz-Ramos et al 2025a 8676 Icon Options.png) and configure the time parameters, results visualization and kind of simulation. In SWMM OPTIONS tab we have to define the ‘End time’ of 00:02:00 for the whole simulation, even if SWMM project is not defined (Fig. 6a). In such cases, Iber will take ‘End time’ as maximum simulation time. Also define a ‘Report step’ of 00:00:10. In tab IBER OPTIONS we have to define both writing times equal to 10 s, and the Hydrological process as No Rain and NO LOSSES (Fig. 6b). The results configuration (IBER RESULTS) by default except for Raster results options that must be defined with a ‘Cell size [m]’ of 0.1 and a Linear interpolation (Fig. 6c). Finally, as we do not have a SWMM project, we will simulate the urban drainage model considering only the inlets; thus, in IBER PLUGINS we must impose Only gullies (Fig. 6d). Accept the configuration.

Sanz-Ramos et al 2025a 9824 Fig 6a.png Sanz-Ramos et al 2025a 1510 Fig 6b.png
(a) (b)
Sanz-Ramos et al 2025a 6568 Fig 6c.png Sanz-Ramos et al 2025a 3344 Fig 6d.png
(c) (d)

Fig. 6. Run configuration: (a) definition of maximum simulation time (SWMM options); (b) Iber options definition; (c) Iber results definition; (d) Iber plugins definition.

To run the simulation, just click on ‘Execute model’ button (Sanz-Ramos et al 2025a 8684 Icon Run.png), select the mesh (Mesh1) and the folder where the model will be run. After checking all data, the Iber-SWMM simulation starts. Once the simulation finishes, the plugin asks for loading the results.

3.1.6 Results visualization

The results of the numerical models, SWMM and Iber, can be shown directly in QGIS. In this case, only the 2D results of Iber are available since none sewer network has been simulated through SWMM. Fig. 7 shows the map of flow depth and velocity at the end of the simulation. As expected, the inlet subtracts water from the model surface, affecting the hydrodynamics near the inlet location. The flow accelerates when it approaches to the inlet (Fig. 7b), especially in the X direction (Fig. 7c) while the velocity in the Y direction is almost null except near the inlet.

Sanz-Ramos et al 2025a 6546 Fig 7a.png Sanz-Ramos et al 2025a 8202 Fig 7aa.png Sanz-Ramos et al 2025a 4592 Fig 7b.png Sanz-Ramos et al 2025a 7013 Fig 7bb.png
(a) (b)
Sanz-Ramos et al 2025a 7344 Fig 7c.png Sanz-Ramos et al 2025a 9148 Fig 7cc.png Sanz-Ramos et al 2025a 2218 Fig 7d.png Sanz-Ramos et al 2025a 4909 Fig 7dd.png
(c) (d)

Fig. 7. Results at the end of the simulation: (a) flow depth; (b) flow velocity (modulus); (c) flow velocity in the X direction; (d) flow velocity in the Y direction.

3.2 Laboratory case: 'El Barrio'

This exercise will numerically replicate the Scientific Platform for Urban Runoff Testing located at the Center for Technological Innovation in Building and Civil Engineering (CITEEC) of the University of A Coruña. The experimental platform represents a perpendicular intersection of two streets and has a flat area of approximately 100 m2. The surface is connected to a drainage network consisting of four manholes, four pipes, one outlet point, and four inlets. It also has four ceramic tile roofs with variable slopes. Further information can be found in [1,18-20].

3.2.1 Data

The model will be build-up using the tools developed ad-hoc to facilitate the whole process. To that end, the following geometric entities are provided:

  • GROUND_layer (shapefile)
  • ROOF_layer (shapefile)
  • INLETS_layer (shapefile)
  • SWMM (*.ini and *inp)
  • DEM (raster)
  • Rainfall (text)


Each shapefile contains the database (*.dbf) with all data needed to compile the ‘Ground, ‘Roof’ and ‘Inlet’ layers. The SWMM model is also prepared and contains the sewer network information. The digital elevation model (DEM) is a raster file with ~4.4 cm pixel-size resolution, and represents the topography of the laboratory facility.

3.2.2 Model build-up

Once opened QGIS, load the IberGIS plugin by clicking on the icon Sanz-Ramos et al 2025a 2183 Icon Iber.png, and the model generation window will appear (Fig. 8). Please, enter the name of the model (GPKG Name) and a description. Then, define the location and the coordinate system using the Spatial Reference System Identifier (SRID), in this case 25830.

Sanz-Ramos et al 2025a 7860 Fig 8.png

Fig. 8. Model generation window. Create a new model or use the Example data model.

After a few seconds, the geopackage is generated with all features to build-up the model. First, we are going to import the SWMM model using the button “Import INP” (Sanz-Ramos et al 2025a 1547 Icon SWMM.png). The importation process of the SWMM model is automatic, and no user interaction is required.

Then, we are going to import the ‘Ground’, ‘Roof’ and ‘Inlet’ layers through the “IberGIS” tools of the Processing Toolbox. In contrast with the SWMM file, to load the file of the geometric entities that define the two-dimensional computational domain, the user might select some fields to be imported to particular fields of the target file. To import the ‘Ground’ layer, go to Processing Toolbox >> IberGIS > Import Ground Geometries, select ‘GROUND_layer’ and define the correspondence of the original to the target database (Fig. 9a). To facilitate this process, similar field names are used in the original file.

Continue with the ‘ROOF_layer’ through Processing Toolbox >> IberGIS > Import Roof Geometries, and define the correspondence of the original to the target database (Fig. 9b). It is important to highlight that if the field ‘outlet_code’ is used it must be properly defined according to the ‘custom_code’ of the ‘Junction’ layer of SWMM.

Finally, we import the ‘INLET_layer’ using the menu Processing Toolbox >> IberGIS > Import Inlet Geometries (Fig. 9c). It is worth noticing the target layer must be the one called ‘Inlet’ stored in the group ‘IBER’. Here we have to define properly the fields correspondence (similar field names are used in the original file).

The result of these importation process is show in Fig. 9d. The computational domain is defined by a ground layer (grey polygon), a roof layer (ochre polygon), a inlets layer (yellow points), and the sewer network defined by junctions (blue points), conduits (blue lines) and an outfall (blue triangle).


Sanz-Ramos et al 2025a 3137 Fig 9a.png Sanz-Ramos et al 2025a 5243 Fig 9b.png Sanz-Ramos et al 2025a 1482 Fig 9c.png
(a) (b) (c)
Sanz-Ramos et al 2025a 1012 Fig 9d.png
(d)

Fig. 9. Generating the model domain. (a) Import ‘Ground’ layer window. (b) Import ‘Roof’ layer window. (c) Import ‘Inlet’ layer window. (d) Model domain after the importation process.

3.2.3 Hydraulic and hydrological conditions

In this facility, the water enters from a rainfall simulator [18–20]. So, we have to define a hyetograph as a time series using the Non visual objects manager button Sanz-Ramos et al 2025a 2557 Icon TS.png. Here, we have first to create a Timeseries and, then, introduce the hyetograph provided in the models data (Rainfall.txt). Fig. 10a shows how to create the Timeseries and the configuration to define the hyetograph. Notice a hyetograph is defined as a constant rainfall (in mm/h) from the time when the rainfall value is first defined to the next time; thus, the last row is set as 0 mm/h to force the rain to stop. Otherwise, a constant rainfall intensity will be considered till the end of the simulation. Once the timeseries is defined, we have to create the ‘Hyetograph’ using the common tools of QGIS: select the ‘Hyetograph’ layer, enable the edition (Sanz-Ramos et al 2025a 9421 Icon editing.png), and create a new one (Sanz-Ramos et al 2025a 2130 Icon create.png) by clicking in the workspace. Immediately it will appear the attribute table creation window where we have only to select the timeseries (called “Rain”). A star-shaped icon (Sanz-Ramos et al 2025a 8055 Icon Hyeto.png) will appear indicating there is a hyetograph defined. Notice, if a unique hyetograph is defined in the model, Iber assumes uniform rainfall over the whole computational domain; whereas, if more the one hyetographs are defined, Iber uses the Thiessen polygons method [1,22] to distribute spatially the rainfall according to each hyetograph.

The unique boundary condition needed is an outlet located at the east of the model. To implement it, go to Boundary conditions manager (Sanz-Ramos et al 2025a 1523 Icon BCM.png), create a new (Fig. 10b) one and assign as ‘Current scenario’. The manager window allows to store different inlet and outlet boundary conditions per scenario using the same ‘idval’ code. The definition of the outlet condition is carried out through the button Create boundary condition (Sanz-Ramos et al 2025a 7568 Icon BC.png). There we have to 1) select the line or lines that define de boundary conditions and 2) select the ‘Boundary type’ as “2D Outlet” with a “Supercritical/Critical” regime (Fig. 10c). This condition is saved in the layer ‘Boundary conditions’, which is stored in the group called ‘IBER’. It is important to highlight that any boundary condition must be implemented over a line of ‘Ground’ layer that belongs to a real boundary of the model. Hence, lines in contact with ‘Roof’ layer or inner lines must not be added as boundary condition. Abnormal results will appear in such case.

Sanz-Ramos et al 2025a 3560 Fig 10a.png Sanz-Ramos et al 2025a 2383 Fig 10b.png Sanz-Ramos et al 2025a 6657 Fig 10c.png
(a) (b) (c)

Fig. 10. (a) Definition of a hyetograph as a timeseries. (b) Definition of a boundary condition. (c) Boundary condition creation window.

3.2.4 Mesh generation

The meshing process must be always done in the latest step, once all model conditions are implemented. This case requires the utilisation of a digital elevation model (DEM), that we have to load using the common tools of QGIS (Layer >> Add Layer >> Add Raster Layer). We recommend to add the file surface_DEM.tiff into ‘BASE MAP’ group.

The mesh creation is carried out through the Mesh manager button (Sanz-Ramos et al 2025a 4906 Icon Mesh.png). There, the user can store different mesh configurations according to the mesh size defined in the field ‘cellsize’ of the ‘Ground’ layer, in combination with different boundary condition scenarios (Fig. 11a). In this case, the ‘cellsize’ is already defined as 0.1 m in ‘Ground’ layer; so, we have only to create it selecting the ‘surface_DEM’ raster layer in the Elevation section (Fig. 11b). We have also introduce a mesh name (“Mesh”), without spaces. The rest of parameters, by default (uncheck all Input data if it is checked). Press ‘Ok’ and the mesh will be generated (Fig. 11c) showing, besides the elements view for ‘Ground’ and ‘Roof’ layers, some information about the properties of the mesh (area and wrong normal).

Finally, we have to assign the boundary condition scenario to this mesh. To do so, we have to open again the Boundary conditions manager, select the scenario and ‘Save to mesh’ selecting Mesh1.

Sanz-Ramos et al 2025a 5779 Fig 11b.png Sanz-Ramos et al 2025a 1286 Fig 11a.png
(a) (b)
Sanz-Ramos et al 2025a 8097 Fig 11c.png
(c)

Fig. 11. (a) Mesh properties. (b) Mesh manager window. (c) View of the computational mesh.

3.2.5 Run configuration

The model is almost ready to be simulated. Go to ‘Options’ button (Sanz-Ramos et al 2025a 9023 Iber Options.png) and configure the time parameters and results visualization. In SWMM OPTIONS tab (Fig. 12a) define the Report step (10 s) and End time (10 min). These values are mandatory and controls the maximum simulation time and the reporting results of SWMM. In IBER OPTIONS tab (Fig. 12b) we have to define the Results 2D time interval (10 s, the value as per SWMM results report) and the Timeseries time interval (10 s, not mandatory). Additionally, we have to activate the Hydrological process module of Iber by enabling Precipitation process (select ‘Hyetograph’ as rainfall type) and, in this case, disable Losses method (‘NO LOSSES’) as the laboratory facility is impervious. The rest of parameters, by default. Finally, in IBER RESULTS tab we have to enable Raster results as ‘Linear interpolation’ with a raster cell size of 0.1 m. Keep the rest of parameters by default and Accept the changes.

Sanz-Ramos et al 2025a 6768 Fig 12a.png Sanz-Ramos et al 2025a 4191 Fig 12b.png Sanz-Ramos et al 2025a 4699 Fig 12c.png
(a) (b) (c)

Fig. 12. Go2Iber options windows: (a) SWMM options definition. (b) Iber options definition. (c) Iber results definition.

To run the simulation, just click on ‘Execute model’ button (Sanz-Ramos et al 2025a 8684 Icon Run.png), select the mesh (Mesh1) and the folder where the model will be run. After checking all data, the Iber-SWMM simulation starts. Once the simulation finish, the plugin asks for loading the results.

3.2.6 Results visualization

The results of the two numerical models, SWMM and Iber, can be shown directly in QGIS. First, the surface results are loaded automatically when the simulation ends. Fig. 13 shows the maximums values of the flow depth and velocity at the end of the simulation. We can observe how the topography plays an important role in the rainfall-runoff and flow propagation hydrodynamics; in this case, the flow tends to accumulate on the norther part of the main street as it commonly occurs in the cities due to the transversal slope of the streets. Major velocities are observed near the inlets, as we observed in the previous case.

Sanz-Ramos et al 2025a 7596 Fig 13a.png Sanz-Ramos et al 2025a 9294 Fig 13aa.png
(a)
Sanz-Ramos et al 2025a 4065 Fig 13b.png Sanz-Ramos et al 2025a 3111 Fig 13bb.png
(b)

Fig. 13. Results of maximums at the end of the simulation: (a) flow depth; (b) flow velocity (modulus).

The results of SWMM can be loaded, as well as the Iber ones, by the button ‘Results’ (Sanz-Ramos et al 2025a 5527 Icon Results.png). Particularly, we are going to generate a profile along the sewer network conduits. To do so, a new window appear to select the nodes, the kind of offset (by depth or elevation) and the time limits (Fig. 14a). Choose the nodes (Sanz-Ramos et al 2025a 4736 Icon Nodes.png), the offset by Depth and the time limits as shown in Fig. 14a. Then, once ‘Draw profile’ button is pressed, the profile will appear allowing some editing and the exportation of the figure (Fig. 14b). Additionally, this figure is dynamic and the profile can evolve along the time.

Sanz-Ramos et al 2025a 4984 Fig 14a.png Sanz-Ramos et al 2025a 5353 Fig 14b.png
(a) (b)

Fig. 14. Profile results: (a) configuration windows; (b) profile from J4 to J1 node at 00:05:10.

3.3 Real case: synthetic rainfall

The last case aims of showing the performance of IberGIS at neighbourhood scale. It represents a particular zone of Sant Boi de Llobregat, a small town near Barcelona city (Spain). It has an area of ~32.5 ha and a sewer network composed by 66 junctions, 74 conduits and 4 outlets. The connection between the surface and subsurface systems is done by 103 inlets. The sewer network, inlets and roof properties, as well as the hydrological data, have been adapted looking for academic purposes.

3.3.1 Data

This case is provided in IberGIS as Example data. Thus, all data is provided within the geopackage of the Example data.

3.3.2 Model build-up

Open QGIS and load the IberGIS plugin by clicking on the icon Sanz-Ramos et al 2025a 2183 Icon Iber.png. The model generation window will appear (Fig. 15). Please, select Example data and enter the model name (GPKG Name) and a description. The location and the coordinate system using the Spatial Reference System Identifier (SRID) is defined automatically (25831, Catalonia, Spain).

Sanz-Ramos et al 2025a 8713 Fig 15a.png Sanz-Ramos et al 2025a 1272 Fig 15b.png
(a) (b)
Sanz-Ramos et al 2025a 3892 Fig 15c.png
(c)

Fig. 15. Model generation window: (a) use the Example data model; (b) load the geopackage. (c) General view of the study area.

The unique data provided is the digital terrain model (DTM) of the study area generated by the Cartographic and Geologic Institute of Catalonia [23], a 2 m-size raster file that covers the entire computational domain. We can load it anywhere (Sanz-Ramos et al 2025a 4860 Icon Raster.png), but we recommend to use the BASE MAP layer, below the layer OSM Standard (Fig. 15c).

3.3.3 Hydraulic and hydrological conditions

Despite the model is ready to run, we are going to check all data, conditions and options. The model is already defined and the essential data of SWMM, IBER and MESH layers are included. If we open the attribute table of ‘Ground’ layer, we can observe that the cellsize is set to 10 m. Since the DTM has a resolution of 2 m, we can use this cellsize value instead. So, enable editing (Sanz-Ramos et al 2025a 4412 Icon editing.png) and use the field calculator (Sanz-Ramos et al 2025a 3592 Icon calculator.png) to update this parameter for the whole entities of this layer. We also modify the ‘scs_cn’ parameter to 90 (Fig. 16a).

It is worth noticing that in ‘Ground’ layer there are two related fields: ‘landuse’ and ‘custom_roughness’ (Fig. 16a). If a real value is defined in ‘custom_roughness’, it will be used as Manning coefficient instead of the values defined in the layer ‘Landuses’ of the IBER group. We can also use a raster of Manning coefficient values if the user select it during the mesh generation process.

The ‘Roof’ layer shows relevant information about the roof properties (Fig. 16b), such as the slope, width, roughness, percentage of spilled volume to street, sewer or infiltrates, and what kind of connection have (isconnected: 1, 100% connected; 2, partially connected; 3, disconnected). Keep this layer by default.

The ‘Inlet’ layer also contains all the information of the inlets (Fig. 16c). It is worth noticing that the ‘outlet_type’ is set as TO NETWORK for all inlets because we are going to simulate the complete network. Also, ‘outlet_node’ is set using the same name as the ‘code’ field of the ‘Junction’ layer (Fig. 16d). As we can observe, more than one inlet can be connected to a one junction. Keep these layers by default.


Sanz-Ramos et al 2025a 1231 Fig 16a.png
(a)
Sanz-Ramos et al 2025a 2120 Fig 16b.png
(b)
Sanz-Ramos et al 2025a 4384 Fig 16c.png
(c)
Sanz-Ramos et al 2025a 2108 Fig 16d.png
(d)

Fig. 16. Attribute tables: (a) ‘Ground’ layer; (b) ‘Roof’ layer; (c) ‘Inlet’ layer; (d) ‘Junction’ layer.

Keep the rest of layers by default, although we encourage to have a look on it. For example, if we open the ‘Hyetograph’ layer (Sanz-Ramos et al 2025a 8055 Icon Hyeto.png, we can check that there is a ‘timeseries’ called T5-5m selected. Check in Non visual object manager (Sanz-Ramos et al 2025a 2557 Icon TS.png) the values of this hyetograph, with a maximum rainfall intensity of 8.75 mm/h. Modify this hyetograph by adding an extra row at the end (01:00) with none intensity (0 mm/h) to indicate that the rainfall event ends.

We can also check the kind of ‘Boundary conditions’ showing the attribute table of this layer: two outlet conditions have been assigned to two lines located at north (Fig. 15c). We can edit or add more editing this layer by using the button Create boundary condition (Sanz-Ramos et al 2025a 7568 Icon BC.png).

3.3.4 Mesh generation

We are going to generate a mesh (e.g., called Mesh1) using the default values of the Mesh manager button (Sanz-Ramos et al 2025a 4906 Icon Mesh.png). We have to select the DTM raster as the elevation file for the 'Ground' layer. The rest of parameters by default.

3.3.5 Run configuration

The model is ready to be simulated, so we can run the simulation immediately. However, we have to check the ‘Options’ (Sanz-Ramos et al 2025a 9023 Iber Options.png) and see what configuration will be used. In SWMM OPTIONS tab the Report step is set as 5 min and the End time at 3 h. In IBER OPTIONS tab we have to define the Precipitation as Hyetograph and Losses method as SCS. Finally, in IBER RESULTS tab we have to enable Raster results as ‘Linear interpolation’ with a raster cell size of 2 m. We are going to simulate the Complete network (IBER PLUGINS) and define a maximum value for depth and velocity legend of 0.25 m and 0.5 m/s (IBERGIS OPTIONS). If the limits are not defined, IberGIS will autimatically defined it each time step.

To run the simulation, just click on ‘Execute model’ button (Sanz-Ramos et al 2025a 8684 Icon Run.png), select the mesh (Mesh1) and the folder where the model will be run. After checking all data, the Iber-SWMM simulation starts. Once the simulation finish, the plugin asks for loading the results.

3.3.6 Run configuration

Once the simulation ends, accept loading the results of the simulation and, then, visualize them at 1 h of simulation. Fig. 17 shows the map of water depth and flow velocity (modulus) on the surface (results of Iber), and how the flow is transported over the streets mainly to the NE direction (where the outlet conditions are implemented). Considerable water accumulation is produced in five to nine locations (Fig. 18a) due to topographical depressions and the no consideration of outlet conditions (e.g., at southern part of the model).

Sanz-Ramos et al 2025a 8124 Fig 17a.png Sanz-Ramos et al 2025a 3871 Fig 17aa.png
(a)
Sanz-Ramos et al 2025a 3399 Fig 17b.png Sanz-Ramos et al 2025a 3293 Fig 17bb.png
(b)

Fig. 17. Hydrodynamic results on surface 1 h after the simulation starts: (a) depths; (b) velocities.

We can also check the Report summary of SWMM results. Fig. 18 shows an example for node depths, node inflows, link flows and outfall loading. Junction J60 presents a maximum depth of 3.55 m; thus, this node is under pressure and the flow goes from the sewer network to the street (this is one of the causes of water accumulation there, see Fig. 18a). In Node subcharge option we can observe that this node is working in pressurized flow for more than 2 hours.

The outfall that spills the maximum discharge is O1, located at NE, with a peak discharge above 0.06 m3/s. This is because the sewer network mainly drains into this direction, and the flow in the conduits tends to accumulate in such direction.

Sanz-Ramos et al 2025a 7003 Fig 19a.png Sanz-Ramos et al 2025a 1932 Fig 19b.png Sanz-Ramos et al 2025a 3713 Fig 19c.png Sanz-Ramos et al 2025a 9956 Fig 19d.png
(a) (b) (c) (d)

Fig. 18. Hydrodynamic results in the sewer network (Summary report): (a) node depths; (b) node inflow; (c) link flow; (d) outfall loading.

Funding

This publication is part of the project “DRAIN - Digital RAIN. An integrated model of urban drainage” (CPP2021-008756) funded by the Spanish Ministry of Science, Innovation and Universities - State Research Agency (MCIN/AEI/10.13039/501100011033) and by the European Union “Next Generation EU/PRTR”.

References

[1] E. Sañudo, L. Cea, J. Puertas, Modelling Pluvial Flooding in Urban Areas Coupling the Models Iber and SWMM, Water (Switzerland) 12 (2020) 2647. https://doi.org/https://doi.org/10.3390/w12092647.

[2] E. Sañudo, O. García-Feal, L. Hagen, L. Cea, J. Puertas, C. Montalvo, R. Alvarado-Vicencio, J. Hofmann, IberSWMM+: A high-performance computing solver for 2D-1D pluvial flood modelling in urban environments, J. Hydrol. 651 (2025) 132603. https://doi.org/10.1016/j.jhydrol.2024.132603.

[3] M. Sanz-Ramos, E. Sañudo, D. López-Gómez, O. García-Feal, E. Bladé, L. Cea, Evolución de la modelización numérica bidimensional del flujo en lámina libre a través del software Iber, Ing. Del Agua 29 (2025) 114–131. https://doi.org/10.4995/ia.2025.23259.

[4] M. Gómez, B. Russo, Hydraulic Efficiency of Continuous Transverse Grates for Paved Areas, J. Irrig. Drain. Eng. 135 (2009) 225–230. https://doi.org/10.1061/(ASCE)0733-9437(2009)135:2(225).

[5] M. Gómez, B. Russo, Comparative Study Of Methodologies To Determine Inlet Efficiency From Test Data: HEC-12 Methodology Vs UPC Method, Water Resour. Manag. III. WIT Trans. Ecol. Environ. 80 (2005) 623–632. https://doi.org/10.2495/WRM050621.

[6] M. Gómez, J. Parés, B. Russo, E. Martínez‐Gomariz, Methodology to quantify clogging coefficients for grated inlets. Application to SANT MARTI catchment (Barcelona), J. Flood Risk Manag. 12 (2019). https://doi.org/10.1111/jfr3.12479.

[7] M. Gómez, B. Russo, J. Tellez-Alvarez, Experimental investigation to estimate the discharge coefficient of a grate inlet under surcharge conditions, Urban Water J. 16 (2019) 85–91. https://doi.org/10.1080/1573062X.2019.1634107.

[8] M. Gómez, J. Tellez-Alvarez, B. Russo, Discharge coefficients to be used in inlet hydraulics, Proc. Inst. Civ. Eng. Water Manag. (2023) 1–11. https://doi.org/10.1680/jwama.22.00059.

[9] M. Sanz-Ramos, J. Téllez-Álvarez, E. Bladé, M. Gómez-Valentín, J.D. Tellez Alvarez, E. Bladé, M. Gómez-Valentín, Simulating the hydrodynamics of sewer-inlets using 2D-SWE based model, in: Adv. Hydroinformatics. SimHydro 2019 - Model. Extrem. Situations Cris. Manag., Springer Singapore, 2020: pp. 821–838. https://doi.org/10.1007/978-981-15-5436-0.

[10] J. Tellez-Alvarez, M. Gómez, B. Russo, Quantification of Energy Loss in Two Grated Inlets under Pressure, Water 12 (2020) 1601. https://doi.org/10.3390/w12061601.

[11] E. Martínez-Gomariz, M. Gómez, B. Russo, P. Sánchez, J.-A. Montes, Methodology for the damage assessment of vehicles exposed to flooding in urban areas, J. Flood Risk Manag. 12 (2018) e12475. https://doi.org/10.1111/jfr3.12475.

[12] E. Martínez-Gomariz, M. Gómez, B. Russo, S. Djordjević, A new experiments-based methodology to define the stability threshold for any vehicle exposed to flooding, Urban Water J. 14 (2017) 1–10. https://doi.org/10.1080/1573062X.2017.1301501.

[13] E. Martínez-Gomariz, M. Gómez, B. Russo, P. Sánchez, J.A. Montes, Metodología para la evaluación de daños a vehículos expuestos a inundaciones en zonas urbanas, Ing. Del Agua 21 (2017) 247. https://doi.org/10.4995/ia.2017.8772.

[14] E. Martínez‐Gomariz, B. Russo, M. Gómez, A. Plumed, An approach to the modelling of stability of waste containers during urban flooding, J. Flood Risk Manag. 13 (2020). https://doi.org/10.1111/jfr3.12558.

[15] B. Russo, D. Sunyer, M. Velasco, S. Djordjević, Analysis of extreme flooding events through a calibrated 1D/2D coupled model: the case of Barcelona (Spain), J. Hydroinformatics 17 (2015) 473–491. https://doi.org/10.2166/hydro.2014.063.

[16] M. Gómez, J. Recasens, B. Russo, E. Martínez-Gomariz, E. Martinez-Gomariz, Assessment of inlet efficiency through a 3D simulation: numerical and experimental comparison, Water Sci. Technol. 74 (2016) 1926–1935. https://doi.org/10.2166/wst.2016.326.

[17] J. Tellez, M. Gómez, B. Russo, J.M. Redondo, Characterize the hydraulic behaviour of grate inlet in urban drainage to prevent the urban’s flooding, in: EGU Gen. Assem. 2016, Viena (Austria), 2016. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000625.

[18] E. Sañudo, L. Cea, J. Puertas, J. Naves, J. Anta, Large‐scale physical facility and experimental dataset for the validation of urban drainage models, Hydrol. Process. 38 (2024). https://doi.org/10.1002/hyp.15068.

[19] J. Naves, J. Anta, J. Suárez, J. Puertas, Hydraulic, wash-off and sediment transport experiments in a full-scale urban drainage physical model, Sci. Data 7 (2020) 44. https://doi.org/10.1038/s41597-020-0384-z.

[20] E. Sañudo, L. Cea, J. Puertas, Comparison of three different numerical implementations to model rainfall‐runoff transformation on roofs, Hydrol. Process. 36 (2022). https://doi.org/10.1002/hyp.14588.

[21] J.L. Aragón Hernández, G.A. Aguilar Martínez, U. Velázquez Ríos, M.R. Jiménez Magaña, A. Maya Franco, Distribución espacial de variables hidrológicas. Implementación y evaluación de métodos de interpolación, Ing. Investig. y Tecnol. 20 (2019) 1–15. https://doi.org/10.22201/fi.25940732e.2019.20n2.023.

[22] V.T. Chow, D.R. Maidment, L.W. Mays, Applied Hydrology, MCGRAW-HIL, New York, USA, 1988..

[23] ICGC, Descàrregues, Inst. Cart. i Geològic Catalunya (2021). https://www.icgc.cat/Descarregues (accessed February 2, 2021).

Back to Top

Document information

Published on 27/10/25

DOI: 10.23967/iber.2025.03
Licence: CC BY-NC-SA license

Document Score

0

Views 164
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?