Line 2: | Line 2: | ||
== Abstract == | == Abstract == | ||
− | Part 4: Energy Efficiency; International audience; We study the Stochastic Traffic Engineering (STE) problem arising from the support of QoS-demanding live (e.g., real time) audio/video applications over unreliable IP-over-wireless access pipes. First, we recast the problem to be tackled in the form of a suitable nonlinear stochastic optimization problem, and then we develop a goodput analysis for the resulting IP-over-wireless pipe that points out the relative effects of fading-induced errors and congestion-induced | + | Part 4: Energy Efficiency; International audience; We study the Stochastic Traffic Engineering (STE) problem arising from the support of QoS-demanding live (e.g., real time) audio/video applications over unreliable IP-over-wireless access pipes. First, we recast the problem to be tackled in the form of a suitable nonlinear stochastic optimization problem, and then we develop a goodput analysis for the resulting IP-over-wireless pipe that points out the relative effects of fading-induced errors and congestion-induced packet’s losses. Second, we present an optimal resource-management policy that allows a joint scheduling of playin, transmit and playout rates. Salient features of the developed joint scheduling policy are that: i) it is self-adaptive; and, ii) it is able to implement reliable Constant Bit Rate (CBR) connections on the top of unreliable energy-limited wireless pipes. |
Document type: Part of book or chapter of book | Document type: Part of book or chapter of book | ||
== Full document == | == Full document == | ||
− | <pdf>Media:Cordeschi_et_al_2011a- | + | <pdf>Media:Cordeschi_et_al_2011a-beopen2457-1560-document.pdf</pdf> |
Part 4: Energy Efficiency; International audience; We study the Stochastic Traffic Engineering (STE) problem arising from the support of QoS-demanding live (e.g., real time) audio/video applications over unreliable IP-over-wireless access pipes. First, we recast the problem to be tackled in the form of a suitable nonlinear stochastic optimization problem, and then we develop a goodput analysis for the resulting IP-over-wireless pipe that points out the relative effects of fading-induced errors and congestion-induced packet’s losses. Second, we present an optimal resource-management policy that allows a joint scheduling of playin, transmit and playout rates. Salient features of the developed joint scheduling policy are that: i) it is self-adaptive; and, ii) it is able to implement reliable Constant Bit Rate (CBR) connections on the top of unreliable energy-limited wireless pipes.
Document type: Part of book or chapter of book
The different versions of the original document can be found in:
Published on 01/01/2011
Volume 2011, 2011
DOI: 10.1007/978-3-642-20757-0_15
Licence: CC BY-NC-SA license
Are you one of the authors of this document?